Köthe coechelon spaces as locally convex algebras

José Bonet and Paweł Domański

Abstract

We study those Köthe co-echelon sequence spaces $k_p(V), 1 \leq p \leq \infty$ or $p = 0$, which are locally convex Riesz algebras for the pointwise multiplication. We characterize in terms of the matrix $V = (v_n)_n$ when an algebra $k_p(V)$ is unital, locally m-convex, a Q-algebra, it has a continuous (quasi)-inverse, all entire functions act on it or some transcendental entire functions act on it. It is proved that all multiplicative functionals are continuous and a precise description of all regular and all degenerate maximal ideals is given even for arbitrary solid algebras of sequences with pointwise multiplication. In particular, it is shown that all regular maximal ideals are solid.

The aim of this paper is to present a thorough investigation of those Köthe co-echelon sequence spaces $k_p(V), 1 \leq p \leq \infty$ or $p = 0$, which are commutative algebras for the pointwise multiplication. Let us recall that

$$k_p(V) := \text{ind } \ell^p(v_n), \quad p \in [1, \infty], \quad \text{and} \quad k_0(V) := \text{ind } c_0(v_n),$$

where $\ell^p(v_n) \subseteq \mathbb{C}^I$ and $c_0(v_n) \subseteq \mathbb{C}^I$ are the usual (weighted) Banach spaces of all scalar sequences $x = (x_i)$, such that $||x||_{n,p} = (\sum_{i \in I} (v_n(i)|x_i|)^p)^{1/p} < \infty$ and the corresponding supremum norm in the cases $p = 0$ and $p = \infty$. Here $V = (v_n)_{n \in \mathbb{N}}$ is a decreasing sequence of functions $v_n: \mathbb{N} \rightarrow [0, \infty[.$

These spaces appear naturally as coefficient spaces for some classical Schauder orthogonal bases in some classical spaces. For instance, the space of distributions on a compact interval $[-1, 1]$ with Chebyshev polynomials as a basis or the space of tempered distributions on the real line with Hermite functions as a basis. Co-echelon sequence spaces are not always closed with respect to pointwise multiplication (but this is so for the above named examples); that is why our first task will be to characterize which spaces $k_p(V)$ are algebras — it turns out that in that case they are automatically topological algebras with jointly continuous multiplication, see Proposition 2.1.

Surprisingly we cannot find in the literature papers devoted exactly to $k_p(V)$ algebras although there are many results which can be deduced from an investigation on more general classes of algebras. However, the picture was far from being complete.

Algebras $k_p(V)$ are Riesz algebras [1, Def. 2.53] or even the so-called f-algebras extensively studied, for instance, in [20], [15], [16]. Co-echelon sequence algebras are also ℓ_∞-submodules of the algebra of all sequences, this type of algebras was considered in [28]. If $p \neq \infty$, $k_p(V)$ has even the so-called orthogonal unconditional basis (unit vectors form such a basis), such algebras were studied in [5], [6], [13], [17], [18], [19]. In case $p = \infty$ the space $k_p(V)$ is algebraically equal to some space of sequences equipped with a family of weighted sup-norms (but topologically they may differ) [10, Th. 15]. Analogously for $p = 1$, $k_p(V)$ is equal even topologically to a space of sequences equipped with a family of weighted ℓ_1-norms [10, Th. 15]. These types of algebras were studied in [26] and [5], respectively.

Finally, since the classical work of Michael [25] and Arens [2], several authors have investigated countable inductive limits of Banach algebras (see, for instance, [3], [23], [12], [14], [21], [29], [31], [32] etc.). Unfortunately, even if $k_p(V)$ is a topological algebra

2000 Mathematics Subject Classification. Primary: 46H05, Secondary: 46A04, 46A45, 46A13, 46J05

Key words and phrases. Topological algebras, Riesz algebras, (LB)-spaces, coechelon spaces, Q-algebras, maximal ideals, regular ideals, ℓ_∞-module, characters.

The research of Bonet was partially supported by MEC and FEDER Project MTM2007-62643 and by GV project Prometeo/2008/101. The research of Domański was supported in years 2007-2010 by Ministry of Science and Higher Education, Poland, grant no. NN201 2740 33.
it need not be an inductive limit of a sequence of Banach algebras although it is by definition an inductive limit of a sequence of Banach spaces.

Let us summarize our main results and comment what has been known so far in this respect. In Section 2 we characterize when $k_p(V)$ is an algebra (Prop. 2.1), when it is unital (Prop. 2.5, 2.6, Cor. 2.7), locally m-convex, Q-algebra or an inductive limit of a sequence of Banach algebras (Theorem 2.8) — the last three conditions turned out to be equivalent. The implication that existence of unit implies nuclearity for $1 \leq p < \infty$ was known for algebras with absolute orthogonal basis (i.e., for instance for $k_1(V)$) see [5, Cor. 2.6]. The characterization of Q-algebras was known only for $p = \infty$ for unital algebras (for the non-unital case a necessary conditions was known) see [26, Prop. 3], a characterization of local m-convexity was known only for $p = \infty$ [26, Prop. 2]. The fact that the inductive limit of a sequence of Banach algebras is locally m-convex and a Q-algebra is known [12] and [31] and references therein (for the unital case [3, Prop. 12, Thm. 2]).

In Section 3 we characterize when all entire functions vanishing at zero act on the algebra $k_p(V)$ (Theorem 3.1) and when there is a transcendental function acting on $k_p(V)$ (Theorem 3.2).

In Section 4 we describe all maximal regular ideals in an arbitrary ℓ_{∞}-module (the class of algebras including $k_p(V)$ algebras for $1 \leq p \leq \infty$ or $p = 0$), explaining which of them have codimension 1 and which are of infinite codimension (these are the only possibilities), see Theorem 4.2, Proposition 4.3. As a consequence we prove that they are all solid. Moreover, we characterize which ideals are contained in some regular maximal proper ideal, Corollary 4.8. So far the description of multiplicative functionals were given in [28, Cor. 14.] or [26, Th. 1] for $p = \infty$, the description of maximal proper ideals in the unital case was given for spaces with orthogonal unconditional basis [18, Th. 1] (so for $p \neq \infty$) but the same proof works for all ℓ_{∞}-modules (so also for $p = \infty$). Nevertheless our proof seems to be easier also in the unitl case. Some hint for the form of such maximal proper ideals in the unital case is given in [15, Th. 2.5]. For the general non-unital case a description of maximal closed ideals was given in [19, Th. 2.1] again for $p \neq \infty$.

On the other hand the description of continuous multiplicative functionals was given for $p = \infty$ in [26, Th. 3].

In Section 5 we show that in $k_p(V)$ algebras all multiplicative functionals are continuous (Theorem 5.1), we clarify which maximal proper ideals are closed (Theorem 5.4) and show that all ideals in $k_p(V)$ are solid if and only if $k_p(V)$ is unital (Prop. 5.17). Finally we describe the ideal $(k_p(V))^2$ essential for the description of all maximal proper degenerate ideals (Prop. 5.6) and characterize when $k_p(V) = (k_p(V))^2$ (Prop. 5.10). As a consequence we find out that in some dual power series algebras exist proper ideals not contained in any maximal proper ideal. In this respect only a description of closed ideals for $p \neq \infty$ was known [19, Th. 2.2].

Acknowledgement. The authors are very indebted to H. Hudzik, A. Sołtysiak and W. Wnuk for literature hints.

1 Notation and Preliminaries

In this article I will always denote a fixed countable index set and $V = (v_n)_{n \in \mathbb{N}}$ a decreasing sequence of functions $v_n : I \to [0, \infty]$. So, $k_p(V)$ is the increasing union of Banach spaces $\bigcup_{n=1}^{\infty} \ell_p(v_n)$ (resp. $\bigcup_{n=1}^{\infty} c_0(v_n)$) endowed with the strongest locally convex topology under which the natural injection of each of the Banach spaces $\ell_p(v_n)$ (resp. $c_0(v_n)$), for $n \in \mathbb{N}$, is continuous. The norm of $\ell_p(v_n)$ is denoted by $\| \cdot \|_{n,p}$ (resp. $\| \cdot \|_{n,0}$). The spaces $k_p(V)$ are called co–echelon spaces of order p. The natural map $k_0(V) \to k_{\infty}(V)$ is clearly continuous but, it is even a topological isomorphism into $k_{\infty}(V)$; see [9].

The space $k_p(V)$ is naturally included in a minimal sequence space with a family of ℓ_p-norms called the projective hull of $k_p(V)$ and denoted by $K_p(V)$ see [8], [10], [7]. It is known that for $p \neq 0, \infty$ the projective hull is topologically equal to $k_p(V)$, for $p = \infty$ it is algebraically equal to $k_{\infty}(V)$ (but the topologies may differ) while for $p = 0$ the projective hull contains (in general properly) $k_0(V)$ as a topological subspace. For more details see [10] or [7].

The unit vectors of the sequence space will be denoted by $e_i := (\delta_{i,j})_{j \in I}$. We denote by e the
constant sequence whose elements are all equal to 1. If \(J \) is a subset of \(I \), we denote by \(e_J \) the characteristic function on \(J \). If \(J \subset I \), the sectional subspace \(k_p(V,J) \) is the subspace of \(k_p(V) \) consisting of all the elements of \(x \in k_p(V) \) whose coordinates \(x_i \) vanish if \(i \notin J \).

For an increasing sequence \(a = \{ \alpha_i \} \) of positive numbers tending to infinity, the dual power series spaces \(\Lambda_p^\alpha(\alpha)' \) of finite (resp. \(\Lambda_p^\infty(\alpha)' \)) type are precisely the Köthe co-echelon spaces \(k_p(V) \) of order \(p \) for the matrix \(V = (v_n) \), \(v_n(i) := \exp(\frac{1}{n} \alpha_i) \) (resp. \(v_n(i) := \exp(-n \alpha_i) \)).

For a systematic treatment of co-echelon spaces (and echelon spaces) see [7, 9, 10], [24, Ch. 27]. We refer the reader to the books by Mallios [23] and Zelazko [33], [34] for unexplained terminology about topological algebras, and for functional analysis and locally convex spaces to Meise, Vogt [24] and Bonet, Pérez Carreras [30].

2 Algebras \(k_p(V) \)

Proposition 2.1 The space \(k_p(V) \), \(1 \leq p \leq \infty \) or \(p = 0 \), is an algebra with (separately continuous) pointwise multiplication if and only if for all \(n \) there is \(k \) such that \(v_k/v_n^m \in \ell_\infty \). Moreover, if it is an algebra then its multiplication is automatically (jointly) continuous.

Proof. Observe that the pointwise multiplication is well defined in \(k_p(V) \) if and only if it is separately continuous by the closed graph theorem for LB-spaces. Since every LB-space is barrelled, separately continuous multiplication is then also a hypocontinuous bilinear form. We can now proceed as in the proof of [30, Prop 11.3.7] to conclude that the hypocontinuous multiplication is continuous, since every LB-space is also a (DF)-space.

Sufficiency: Fix \(x \in k_p(V) \). There is \(m \in \mathbb{N} \) such that

\[
\sup_i |x_i|/v_m(i) = C_1 < \infty.
\]

We show that \(M_x(y) := xy \) is continuous on \(k_p(V) \). It is enough to show that \(M_x \) maps unit balls in steps into bounded sets in steps. Given \(n \geq m \), we select \(k \) as in the assumption to conclude, for \(y \in \ell_p(v_n) \),

\[
\sum_i |x_i y_i v_k(i)|^p \leq C \sum_i (|x_i| v_n(i) y_i v_n(i))^p < \infty.
\]

The multiplication is separately continuous.

Necessity. STEP 1. We show that

\[
\forall x \in k_p(V), n \exists k, C > 0 \forall i \in I : |x_i| v_k(i) \leq C v_n(i).
\]

Since the pointwise multiplication is separately continuous, for every \(x \) the map \(M_x : k_p(V) \rightarrow k_p(V), M_x(y) = xy \), is continuous. Thus, by the Grothendieck factorization theorem,

\[
\forall n \exists k, C > 0 \forall y \in \ell_p(v_n) : \|M_x y\|_{k,p} \leq C \|y\|_{n,p}.
\]

Since \(\|(1/v_n(i)) e_i\|_{n,p} \leq 1 \) for each \(i \in I \), we have \(\|(1/v_n(i)) x, e_i\|_{k,p} \leq C \). This implies

\[
|x_i| v_k(i) \leq C v_n(i).
\]

STEP 2. For each \(n \) the map \(V_n : k_p(V) \rightarrow k_\infty(V), V_n(x) := \left(\frac{x_i}{v_n(i)} \right)_i \) is well defined. Indeed, if \(x \in k_p(V) \), select \(k \) as in STEP 1 for the given \(n \), then \(\sup_i v_k(i) |x_i|/v_n(i) \leq C \), hence \(x/v_n \in k_\infty(v_n) \subset k_\infty(V) \).

Now, since \(V_n \) is clearly linear, we can apply the closed graph theorem for (LB)-spaces [24] to conclude that it is continuous. Therefore

\[
\forall n \forall m \exists k, C > 0 \forall x \in \ell_p(v_m) : \|V_n x\|_{k,\infty} \leq C \|x\|_{m,p}.
\]
We have observed that in every topological LB-algebra multiplication is automatically jointly continuous.

Remark 2.2 (1) We have observed that in every topological LB-algebra multiplication is automatically jointly continuous.

(2) If \(v_n(i) \geq 1 \), for all \(i \in I \) and \(n \in \mathbb{N} \), then the condition in Proposition 2.1 always holds taking \(k = n \) and the constant \(C = 1 \). This implies in particular that all the Banach step spaces are in fact Banach algebras. In this case, the space \(k_p(V) \) is a locally m-convex algebra [12, 14].

See below for a characterization of locally m-convex algebras of type \(k_p(V) \).

Remark 2.4 If we take \(I = \mathbb{N} \times \mathbb{N} \) and define \(v_n(i, j) := 1 \) if \(i \geq n \) and \(v_n(i, j) := (1/j)^k \), if \(i < k \), then \(k_\infty \) and \(k_0 \) are algebras by Proposition 2.1, but \(k_0(V) \) is not equal to its projective hull \(K_0(V) \) algebraically and the topology of \(k_\infty \) is strictly finer than the topology of the projective hull \(K_0(V) \). In fact, the sequence \(V \) does not satisfy condition (D); cf. [10]. Another example of an algebra \(k_0(C) \) strictly smaller than \(K_0(V) \) can be seen in [24, 27.21].

Proposition 2.3 (Comp. [19, Th.2.1]) The set of non zero continuous multiplicative functionals on an algebra \(k_p(V) \), \(1 \leq p < \infty \) or \(p = 0 \), coincides with the set of point evaluations on \(I \).

Proof. Continuous functionals on \(k_p(V) \) are elements of \(\lambda_q(V^{-1}) \) for \(\frac{1}{p} + \frac{1}{q} = 1 \) for \(p \neq \infty \). If a functional has two non-zero coordinates, it does not vanish on some pair of two vectors \(x, y \) such that \(xy = 0 \).

Proposition 2.5 Suppose that \(k_p(V), 1 \leq p < \infty \), is an algebra. The following assertions are equivalent:

(a) \(k_p(V) \) is unital.

(b) There is \(m \) such that \(v_m \in \ell_p \).

(c) There is \(m \) such that \(v_m \in \ell_1 \).

(d) \(k_p(V) \) is nuclear and there is \(m \) such that \(v_m \in \ell_\infty \).

Proof. The equivalence of (a) and (b) and implication (c)⇒(b) are trivial.

(b)⇒(c): Take \(2^k > p \), then \(v_m \in \ell_2k \). By Prop. 2.1 applied \(k \)-times, there is \(n \) such that \(v_n \leq C v_m^2 \) thus \(v_n \in \ell_1 \).

To see that (c) implies nuclearity of \(k_p(V) \), given \(n \geq m \) we apply Proposition 2.1 to find \(k \) such that \(v_k/v_n^2 \in \ell_\infty \). Then

\[
\sum_i \frac{v_k(i)}{v_n(i)} \leq C \sum_i v_n(i) < \infty,
\]
Suppose that v_n, hence v, belongs to ℓ_1. The conclusion follows by Grothendieck Pietsch criterion, cf. [24, 28.16].

Now suppose that condition (d) holds. We apply Grothendieck Pietsch criterion to find $k > m$ such that $v_k/v_m \in \ell_1$. Since $v_m \in \ell_\infty$, we get

$$\sum_i v_k(i) \leq \sum_i v_m(i) \left(\frac{v_k(i)}{v_m(i)} \right) \leq C \sum_i \left(\frac{v_k(i)}{v_m(i)} \right) < \infty,$$

thus $v_k \in \ell_1$ and (c) holds.

Proposition 2.5 does not hold for $p = 0$. Indeed, it is enough to take $v(i) \to 0$ as i goes to ∞ such that $v_n(i) := v(i)^n$ is not summable for each $k \in \mathbb{N}$. For example $v_n(i) := \frac{1}{(\log i)^p}$. However, we have the following result.

Proposition 2.6 Suppose that $k_0(V)$ is an algebra. The following assertions are equivalent:

(a) $k_0(V)$ is unital.

(b) There is m such that $v_m \in c_0$.

(c) $k_0(V)$ is Schwartz and there is m such that $v_m \in \ell_\infty$.

Proof. The proof is similar to the one of Proposition 2.5, since $k_0(V)$ is Schwartz if and only if for each n there is k such that $v_k/v_n \in c_0$; cf. [9].

Since for some V we have $k_{\infty}(V) = \ell_\infty$, the above results do not hold for $p = \infty$. However, we have the following general result.

Corollary 2.7 The algebra $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, has a unit if and only if $k_p(V) = k_{\infty}(V)$ and there is m such that $v_m \in \ell_\infty$.

Clearly the condition $e \in k_{\infty}(V)$ does not imply that the algebra $k_{\infty}(V)$ is Montel, since one can take $v_n(i) = 1$ for each n and obtain $k_{\infty}(V) = \ell_\infty$.

An element x of a (not necessarily unital) commutative algebra is called quasi-invertible if there is $y \in A$, necessarily unique, such that $x + y = xy$. The element y is called the quasi-inverse of A. An element x of an algebra A with unit e is quasi-invertible with quasi-inverse y if and only if $e - x$ is invertible and $e - y$ is its inverse. An algebra A is called a Q-algebra if the set of quasi-invertible elements is open. For unital algebras this concept coincides with the fact that the set of invertible elements is open. Moreover, the inverse is continuous in an unital algebra if and only if the map sending quasi-invertible elements into their quasi-inverses is continuous (i.e., quasi-inverse is continuous). We refer to [23] for more information.

Now we present a theorem characterizing many basic properties of algebras $k_p(V)$.

Theorem 2.8 Suppose that $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, is an algebra. The following assertions are equivalent:

(a) $k_p(V)$ is locally m-convex.

(b) $k_p(V)$ is a Q-algebra.

(c) The map sending each quasi-invertible element of $k_p(V)$ to its quasi-inverse is continuous.

(d) Every sectional subspace $k_p(V,E)$ with unit coincides algebraically (and topologically) with $\ell_\infty(E)$.

(e) $\inf_{i \in I} v_n(i) > 0$ for each $n \in \mathbb{N}$.

(f) $k_p(V) \subset \ell_\infty$ holds algebraically.
(g) Infinitely many / all the steps are Banach algebras.

(h) \(k_p(V) \) is an inductive limit of a sequence of Banach algebras.

If \(p \neq \infty \) then the above conditions are also equivalent to

(i) No infinite dimensional sectional subspace of \(k_p(V) \) has unit.

Proof. (a) \(\Rightarrow \) (i) for finite \(p \): Suppose that a sectional subspace \(k_p(V, J) \), \(J \subset I \), with \(J \) infinite, has a unit. By (a), \(k_p(V) \) is locally m-convex, then \(k_p(V, J) \) is a unital locally m-convex algebra of type \(k_p(V) \). By Želazko [33, Th 12.3], an element \(x \in k_p(V, J) \) is invertible as soon as every non zero multiplicative continuous functional does not vanish on \(x \). Non zero multiplicative continuous functionals on \(k_p(V) \) are evaluations on the elements of the index set (see Prop. 2.3); thus \(x \in k_p(V, J) \) is invertible if and only if all its coordinates are non-zero. However, if \(x \in k_p(V, J) \) is invertible in the unital algebra \(k_p(V, J) \), there are \(k \) and \(C > 0 \) such that, for all \(j \in J \), \(\frac{1}{|x_j|} < \frac{C}{v_k(j)} \).

If we select \(y_j := \min(1, j^{-1}v_j(j)) \), \(j \in J \), we have that \(y = (y_j)_{j \in J} \in k_p(V, J) \), since \(k_p(V, J) \) has a unit. On the other hand, for each \(k \in \mathbb{N} \) and each \(j > k \), \(j \in J \).

\[
v_k(j) \frac{1}{|y_j|} \geq v_k(j) \frac{j}{v_j(j)} \geq j.
\]

which implies that \(y \) is not invertible, although all its coordinates are non zero. A contradiction.

(i) \(\Rightarrow \) (d) for finite \(p \): Obvious.

(d) \(\Rightarrow \) (e). Assume that there exists \(n \) such that \(\inf_i v_n(i) = 0 \). Thus there exists an infinite subset \(J \subset I \) such that

\[
\sum_{j \in J} v_n(j) < \infty.
\]

The sectional subspace \(k_p(V, J) \) contains unit by Propositions 2.5, 2.6 and Corollary 2.7 and \(k_p(V, J) \neq \ell_\infty \).

(e) \(\Rightarrow \) (f): Obvious.

(f) \(\Rightarrow \) (e): If (e) does not hold we find \(m \) and a sequence \((i_j)_j \) in \(I \) such that \(v_m(i_j) < 2^{-2j} \) for each \(j \). The element \(x = (x_i)_i \) given by \(x_{i_j} := 1/v_m(i_j)^{1/2}, j \in \mathbb{N} \) and \(x_i = 0 \) otherwise, is unbounded but it belongs to \(\ell_p(v_m) \subset k_p(V) \).

(a) \(\Rightarrow \) (d) for \(p = \infty \): Since \(k_0(V) \) is a topological subalgebra of \(k_\infty(V) \) [9], it is a locally m-convex algebra. Thus by (a) \(\Rightarrow \) (d) for finite \(p \) and (d) \(\Rightarrow \) (e) \(\Leftrightarrow \) (f) already proved we get (e) and (f). Clearly, every unital \(k_\infty(V, E) \) contains \(\ell_\infty(E) \), thus (f) implies that \(k_\infty(V, E) = \ell_\infty(E) \).

(e) \(\Rightarrow \) (g) If \(\inf_i v_n(i) > 0 \), then

\[
\frac{v_n(i)}{v_n(i)^2} = \frac{1}{v_n(i)}
\]

is bounded and the step \(\ell_p(v_n) \) or \(c_0(v_n) \) is an algebra.

(g) \(\Rightarrow \) (h): Obvious.

(h) \(\Rightarrow \) (a) If infinitely many steps are commutative Banach algebras then the inductive limit is an m-convex algebra. See e.g. [12] and [14].

(a) \(\Rightarrow \) (b): See [31], where the proof is given in the unital case. For non-unital case obvious changes are required.

(b) \(\Rightarrow \) (e): Suppose that (e) does not hold. Find \(n \) and a sequence \((i(k))_k \) in \(I \) such that

\[
v_n(i(k)) < 1/k \quad \text{for each } k.
\]

This implies that \(e_{i(k)}(k) \) tends to 0 in \(\ell_p(v_n) \), hence in \(k_p(V) \). Now, 0 is quasi-invertible but \(e_{i(k)}(k) \) is not, since \(e_{i(k)}(k) = e_{i(k)}(k) \) implies \(1 + y_{i(k)} = y_{i(k)} \), a contradiction.

(a) \(\Rightarrow \) (c): Every locally m-convex algebra has a continuous quasi-inverse operation by [23, II Lemma 3.1].

(c) \(\Rightarrow \) (e): We proceed again by contradiction and assume that (e) is not satisfied. Select \(n \) and a sequence \((i(k))_k \) such that \(\lim_{k \to \infty} v_n(i(k)) = 0 \). Select a sequence \((v_k)_k \subset [0, 1/2[\) tending to 0 such that \((v_n(i(k))/v_k)_k \) is unbounded for each \(m \). Each element \((1 - v_k)e_{i(k)} \) is quasi-invertible.
with quasi-inverse $\frac{1}{\nu_k} e_{i(k)}$ as a direct computation shows. On the other hand, $(1 - \nu_k) e_{i(k)}$ converges to 0 in $\ell_p(v_n)$, hence in $k_p(V)$, but $\left(\frac{1}{\nu_k} e_{i(k)}\right)_k$ is unbounded in every step of $k_p(V)$.

For $p \neq 0$ this implies that $\left(\frac{1}{\nu_k} e_{i(k)}\right)_k$ is not convergent by regularity of $k_p(V)$. For $p = 0$ we observe that $\left(\frac{1}{\nu_k} e_{i(k)}\right)_k$ is also unbounded in every step of $k_\infty(V)$ so it cannot be convergent to zero in $k_\infty(V)$ and also in $k_0(V)$ since the latter space is a topological subspace of $k_\infty(V)$ [9].

This shows that the quasi-inverse operation is not continuous. □

As a consequence of Propositions 2.5, 2.6, Corollary 2.7 and Theorem 2.8, we get the following corollaries.

Corollary 2.9 If $1 \leq p < \infty$ or $p = 0$ and $k_p(V)$ is a unital algebra, then $k_p(V)$ is not a \mathcal{Q}-algebra and the inversion is not continuous on the group of invertible elements $\mathcal{G}(k_p(V))$.

Corollary 2.10 An unital algebra $k_\infty(V)$ is a \mathcal{Q}-algebra if and only if it coincides with the Banach algebra ℓ_∞.

Proof. It is a consequence of Corollary 2.7 and Theorem 2.8, since a locally m-convex unital algebra $k_\infty(V)$ must coincide algebraically and topologically with ℓ_∞. □

From the above it follows immediately:

Corollary 2.11 $\Lambda_p^0(\alpha)'$ is a non-unital locally m-convex \mathcal{Q}-algebra. $\Lambda_p^\infty(\alpha)'$ are locally convex (Riesz) algebras which are never locally m-convex \mathcal{Q}-algebras and they are never inductive limits of a sequence of Banach algebras. They have always unit for $p = \infty$ or $p = 0$ and only in nuclear case for $1 \leq p < \infty$.

3 Entire functions acting on algebras $k_p(V)$

We say that an entire function $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ acts on the algebra A if for every $x \in A$ the series $\sum_{n=0}^{\infty} \alpha_n x^n$ converges to an element in A. We say that a space of entire functions acts on an algebra if all its elements act on the algebra. In our next results we identify the entire function $f \in H(\mathbb{C})$, $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$, with the sequence of coefficients $(\alpha_n)_{n=0}^{\infty}$.

If an algebra $k_p(V)$ is not unital, then constant functions do not act on $k_p(V)$. This is why we restrict our attention to entire functions vanishing at 0.

Theorem 3.1 The space $H_0(\mathbb{C})$ of entire functions vanishing at 0 acts on an algebra $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, if and only if $\inf_{n} v_n(i) > 0$ for all $n \in \mathbb{N}$.

Proof. We give the details of the proof for $1 \leq p < \infty$, the other cases are easier.

Assume first that there exists k such that $\inf_j v_k(j) = 0$ and that $H_0(\mathbb{C})$ acts on $k_p(V)$. For every fixed $t = (t_j)_j \in k_p(V)$, the map

$$H_0(\mathbb{C}) \to k_p(V), \quad (\alpha_n)_n \mapsto \left(\sum_{n=1}^{\infty} \alpha_n t^n_j\right)_j,$$

is linear and obviously has closed graph, so it is continuous. Hence there are k, $r > 0$ and $C > 0$ such that

$$\left(\sum_{n} |v_k(i) \sum_n \alpha_n t^n_i|^p\right)^{\frac{1}{p}} \leq C \sup_n |\alpha_n| r^n$$

7
for each \((\alpha_n)_n \in H_0(\mathbb{C})\). In particular, for each \(n \in \mathbb{N}\),
\[
\left(\sum_{i=1}^{\infty} |v_k(i) t_i^n|^p \right)^{\frac{1}{p}} \leq C r^n.
\]
Select a sequence \((j_m)_m \subset I\) such that \(v_k(j_m) \leq 2^{-2m}\). Thus
\[
t = (t_j)_j = \begin{cases} \frac{1}{2} (1/v_k(j_m))^{1/2} & \text{for } j = j_m, \\ 0 & \text{otherwise}, \end{cases}
\]
belongs to \(k_p(V)\). Now, the sequence \(\left(\sum_{m=1}^{\infty} \left| v_k(j_m)(\frac{n-2}{p^2})^{1/2} \right|^p \right)^{\frac{1}{p}}\) is unbounded since \(\frac{v_k(j_m)}{n^{1/2}} \geq \frac{2^{m(n-2)}}{n^{1/2}} \to \infty\) for every \(m\) and \(r\); a contradiction.

To show the converse, first observe that our assumption implies that, for each \(k\) there is \(C_k > 0\) such that \(\|x^n\|_{k,p} \leq C_k \|x\|_{k,p}^n\) for each \(x \in \ell_p(v_k)\), since \(v_k/v_k^2 \leq C_k\) on \(I\) for each \(k\). Let \(f(z) = \sum_{n=1}^{\infty} \alpha_n z^n\) be a fixed element of \(H_0(\mathbb{C})\). For each \(k\) and each \(x \in \ell_p(v_k)\) the series
\[
\sum_{n=1}^{\infty} |\alpha_n| \cdot \|x^n\|_{k,p} \leq \sum_{n=1}^{\infty} |\alpha_n| C_k \|x\|_{k,p}^n
\]
converges. Therefore \(\sum_{n=1}^{\infty} \alpha_n x^n\) converges in the Banach space \(\ell_p(v_k)\) for each \(x \in \ell_p(v_k)\) and \(f(z)\) acts on \(k_p(V)\).

\[\square\]

Theorem 3.2 Let \(k_p(V), 1 \leq p \leq \infty \text{ or } p = 0\), be an algebra. The following conditions are equivalent:

(a) Only the polynomials act on \(k_p(V)\).

(b) There is \(k\) such that for all \(l > k\) there is \(n\) such that \(\sup_{i \in I} \frac{v_l(i)}{v_k(i)} = \infty\).

(c) There is \(k\) such that for all \(l > k\) there is \(n\) such that for all \(m \geq n\) we have \(\sup_{i \in I} \frac{v_l(i)}{v_k(i)} = \infty\).

Proof. To prove that (a) implies (b), we assume that (b) does not hold, and select an increasing sequence \((l(k))_k \subset \mathbb{N}\) and \(C_{k,n} \geq 1, k, n \in \mathbb{N}\) such that
\[
\sup_{i \in I} \frac{v_{l(k+1)}(i)}{v_{l(k)}(i)} \leq C_{k,n}, \quad k, n \in \mathbb{N}.
\]
Find a sequence \((\beta_n)_n\) of strictly positive numbers such that \(M_{k,\lambda} := \sup_n \beta_n C_{k,n} \lambda^n < \infty\) for each \(k \in \mathbb{N}\) and each \(\lambda \in \mathbb{N}\). Put \(\alpha_n := 2^{-n} \beta_n > 0\). Clearly \(f(z) := \sum_n \alpha_n z^n, z \in \mathbb{C}\), defines an entire function which is not a polynomial. If \(x \in k_p(V)\), there are \(l(k)\) and \(\lambda \in \mathbb{N}\) such that
\[
\|x\|_{l(k),p} = \left(\sum_{i} (|x_i| v_{l(k)}(i))^p \right)^{1/p} \leq \lambda.
\]
For \(n\) arbitrary, we have
\[
\|x^n\|_{l(k+1),p} = \left(\sum_{i} (|x_i^n| v_{l(k+1)}(i))^p \right)^{1/p} \leq C_{k,n} \|x\|^n_{l(k),p} \leq C_{k,n} \lambda^n.
\]
Therefore
\[
\sum_{n} |\alpha_n| \|x^n\|_{l(k+1),p} \leq \sum_{n} 2^{-n} \beta_n C_{k,n} \lambda^n \leq M_{k,\lambda}.
\]
Consequently, $\sum \alpha_n x^n$ converges in $\ell_p(v_{l+k+1})$, and $f(z)$ acts on $k_p(V)$. The details for the cases $p = 0$ and $p = \infty$ are even easier.

We now show that (b) implies the stronger condition (c). To see this, select k as in (b) and, for $l > k$ use (b) to take n. Clearly $n \geq 2$. Observe that, if $v_k(i) \geq 1$, then $v(l)/v(k) = \frac{1}{v_k(i)^{n-1}} \leq 1$.

Hence, $\sup_{i \in I} v(i) < \infty$, since $\sup_{i \in I} v(i) = \infty$. On the other hand, if $m > n$ we get, for $i \in I$ with $v_k(i) < 1$, $\frac{v(i)}{v_k(i)^{n-1}} \leq \frac{v(i)}{v_k(i)^{m-1}}$. This yields $\sup_{i \in I} \frac{v(i)}{v_k(i)^{m-1}} = \infty$; and condition (c) is proved.

Finally, we assume that condition (a) does not hold but condition (c) is satisfied. There is an entire function $f(z) = \sum \alpha_n x^n$ not a polynomial acting on $k_p(V)$. Select an increasing sequence of natural numbers $1 < n_1 < n_2 < ... < n_j < ...$ such that $\alpha_{n_j} \neq 0$ for each j. Proceeding by induction we select a subsequence of $(n_j)_j$ as follows. We apply (c) to select $n_j(1)$ such that $\sup_{i \in I} \frac{v_{k+1}(i)}{v_k(i)^{n_j(1)}} = \infty$. Find $i_1 \in I$ such that

$$\frac{v_{k+1}(i_1)}{v_k(i_1)^{n_j(1)}} > 2^{2n_j(1)}.$$

Inductively, we find a subsequence $n_j(1) < n_j(2) < ... < n_j(s) < ...$ of $(n_j)_j$ and a sequence (i_s) of pairwise different points in I such that, for each $s \in \mathbb{N}$,

$$\frac{v_{k+s}(i_s)}{v_k(i_s)^{n_j(s)}} > (s + 1)^{(s+1)n_j(s)}.$$

Now we define $x = (x_s)_i$ by $x_s \leftarrow 2^{-s}/v_k(i_s)$, $s \in \mathbb{N}$ and $x_i = 0$ otherwise. It is easy to see that $x \in \ell_p(v_k)$. By assumption $\sum \alpha_n x^n$ converges in $k_p(V)$. In particular $\{\alpha_n x^n : n \in \mathbb{N}\}$ is bounded in $k_p(V)$. Since $k_p(V)$ is a regular inductive limit for $p \neq 0$, we can find $l \in \mathbb{N}$ such that $\{\alpha_{n(l)} x^n(l) : s \in \mathbb{N}\}$ is bounded in $\ell_p(v_l)$ (for $p = 0$ we use the fact that $k_0(V)$ is a topological subspace of $k_\infty(V)$ and we work in $k_\infty(V)$, see [10], [9]). We have found $l \in \mathbb{N}$ such that $x^{n_j(s)} \in \ell_p(v_l)$ for each s (with $p = \infty$ if $p = 0$). This implies

$$\sum_s \left(\frac{2^{-s n_j(s)} v_l(i_s)}{v_k(i_s)^{n_j(s)}} \right)^p < \infty$$

for all s. However, for $s > l - k$, we get

$$\frac{2^{-s n_j(s)} v_l(i_s)}{v_k(i_s)^{n_j(s)}} \geq \frac{2^{-s n_j(s)} v_{k+s}(i_s)}{v_k(i_s)^{n_j(s)}} > 2^{-s n_j(s)} (s + 1)^{(s+1)n_j(s)},$$

which does not tend to 0 as s goes to ∞; a contradiction.

\[\square \]

Corollary 3.3 Only the polynomials act on the algebra $\mathcal{A}(\alpha)'$ while all entire functions vanishing at zero act on $\mathcal{A}(\alpha)'$.

Corollary 3.4 There is an entire function which is not a polynomial acting on an algebra $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, if and only if for each k there is $l > k$ such that for all n we have $\sup_{i \in I} \frac{v(i)}{v_k(i)^{n-1}} < \infty$.

Example 3.5 We define $\exp_1(z) := \exp(z)$ and $\exp_k(z) := \exp(\exp_{k-1}(z))$ for $z \in \mathbb{C}$, $k \in \mathbb{N}$, and $v_k(i) := 1/\exp_k(i)$ for each $i \in \mathbb{N}$. The m-convex space $k_\infty(V)$ is an algebra, it is not a locally m-convex algebra by Theorem 2.8, but there are entire functions which are not polynomials acting on $k_\infty(V)$, since it is easy to show that the sequence (v_k) satisfies the condition in Corollary 3.4. In fact, $f(z) = \exp(z)$ acts on $k_\infty(V)$, as can be directly checked.
Observe than the fact that an entire function acts on an individual element x of an algebra $k_\ell(V)$ does not imply that it acts on $2x$. To see this, consider the weights $v_1(i) = 1/i$ and $v_\ell(k) = \exp(-\frac{2k-1}{k})$, $k \geq 2$, for $i \in \mathbb{N}$. It is easy to see that $f(z) = \exp(z)$ acts on $x = (1, 2, 3, \ldots) \in \ell_\infty((v_1)$, since $(\sum_{n=0}^\infty \frac{1}{n^i})$ converges in $\ell_\infty((v_2)$). However, $f(z)$ does not act on $2x$. Indeed, otherwise there would be k such that $(\exp(2i))_i \in \ell_\infty((v_2)$, but this is impossible.

4 Multiplicative functionals and ideals in ℓ_∞-modules

In the last two sections we assume that $I = \mathbb{N}$, which is no loss of generality, but smoothens the notation. An algebra A of complex sequences with pointwise multiplication is an ℓ_∞-module if for every $x \in A$ and every $y \in \ell_\infty$ also $xy \in A$. Of course, algebras $k_\ell(V)$ are ℓ_∞-modules. Clearly every ℓ_∞-module is a solid algebra, i.e., if a sequence x satisfies $|x| \leq |y|$ for some $y \in A$ then $x \in A$.

For $1 \leq p < \infty$ or $p = 0$, the unit vectors $(e_i)_i$ form an orthogonal basis of $k_\ell(V)$, i.e. it is a Schauder basis such that $e_i e_j = 0$ if $i \neq j$ and $e_i e_i = e_i$ for each i. Thus we can apply in this case the results of [18] and [19]. Algebras with orthogonal Schauder bases are examples of ℓ_∞-modules.

An ideal J in an algebra A is called regular if the algebra A/J is unital; see [23, Chapter II]. These ideals are sometimes called modular. It is well known that every regular ideal is contained in a maximal regular ideal.

It is also well known that maximal ideals J in an algebra A are either regular or degenerate in the sense that the product of two arbitrary elements in A/J equals 0. An ideal J in A is degenerate if and only if it contains the ideal

$$A^2 := \text{span}\{xy \mid x, y \in A\}.$$

Therefore proper maximal degenerate ideals are linear subspaces of codimension one in A containing A^2. Thus the description of maximal proper ideals requires a description of maximal regular ideals and a description of the ideal A^2. We will do the first part of this task for general ℓ_∞-modules.

Let us defined for an ideal J in an ℓ_∞-module A the family of sets

$$F_J := \{U \subset \mathbb{N} \mid A(U^c) \subset J\}.$$

The proof of the following result is easy.

Lemma 4.1 Let A be an ℓ_∞-module. For each proper ideal $J \subset A$, the family of sets F_J is a filter.

On the other hand, if \mathcal{U} is an ultrafilter on \mathbb{N} we define the ideal in the ℓ_∞-module A as follows:

$$J_\mathcal{U} := \{x \in A \mid \forall y \in A \lim_{\mathcal{U}} xy = 0\}.$$

We say that a subset E of \mathbb{N} is unital if the characteristic function e_E of E belongs to A. This happens if and only if the sectional subalgebra

$$A(E) := \{x \in A \mid x_i = 0 \forall i \notin E\}$$

has a unit. The solid hull \tilde{J} of an ideal $J \subset A$ is the set of all $z \in A$ such that $|z| \leq |x|$ for some $x \in J$. An ideal is called solid if $\tilde{J} = J$.

Now, we are ready to present the main result of this section. In [18, Theorem 2 and Lemma 6] (comp. [15, Th. 2.5]) the following theorem is proved for unital algebras with orthogonal unconditional Schauder bases. The same proof works for unital ℓ_∞-modules. Our proof is easier also in that cases than the original one.
Theorem 4.2 The map
\[J \mapsto \mathcal{F}_J \]
is a bijection between the family of all proper maximal regular ideals in an \(\ell_\infty \)-module \(A \) and all ultrafilters on \(\mathbb{N} \) containing a unital set. The inverse map is defined as
\[\mathcal{U} \mapsto J_\mathcal{U} \].
In particular, all maximal proper regular ideals are solid.
Proof is based on a sequence of Propositions and Lemmas.

Proposition 4.3 Let \(A \) be an \(\ell_\infty \)-module.
(a) If an ultrafilter \(\mathcal{U} \) contains no unital sets, then \(J_\mathcal{U} = A \).
(b) If an ultrafilter \(\mathcal{U} \) contains a unital set then \(J_\mathcal{U} \) is a proper ideal in \(A \). It is of codimension one if and only if
\[\forall x \in A \quad \lim_{\mathcal{U}} x < \infty. \]
Otherwise \(J_\mathcal{U} \) is of infinite codimension.
(c) All ideals \(J_\mathcal{U} \) for free ultrafilters \(\mathcal{U} \) are equal to \(A \) if and only if there is no infinite unital sets.

Proof. (a) If \(\lim_{\mathcal{U}} x \neq 0 \) for some \(x \in A \), then there are \(\varepsilon > 0 \) and a set \(U \in \mathcal{U} \) such that \(|x_i| > \varepsilon \) for every \(i \in U \). Thus \(U \) is a unital set. We have shown that if \(\mathcal{U} \) contains no unital set, then \(\lim_{\mathcal{U}} x = 0 \) for all \(x \in A \). Therefore \(\lim_{\mathcal{U}} yx = 0 \) for every \(x, y \in A \), and \(J_\mathcal{U} = A \).
(b) Clearly, \(J_\mathcal{U} \) is an ideal. If \(\mathcal{U} \) is a unital set in \(\mathcal{U} \), then \(e_{\mathcal{U}} \notin J_\mathcal{U} \) and \(J_\mathcal{U} \) is proper. Observe that if
\[\forall x \in A \quad \lim_{\mathcal{U}} |x| < \infty \]
then
\[J_\mathcal{U} = \{ x : \lim_{\mathcal{U}} x = 0 \}. \]
Clearly, \(\dim A/J_\mathcal{U} = 1 \).
If there is \(x \in A \) such that
\[\lim_{\mathcal{U}} x = \infty, \]
then there is a decreasing sequence of unital sets \((U_n) \subset \mathcal{U} \) such that \(|x| \) is bigger than \(n \) on \(U_n \), \(U_0 := \mathbb{N} \). Let us define a matrix of positive real numbers \((a_{n,k})\) such that
\[\forall n, k \quad 0 < a_{n,k} \leq n, \quad a_{n,k+1} > a_{n,k} > a_{n-1,k} \]
and
\[\forall k \quad a_{n,k+1} = a_{n,k} \rightarrow \infty \quad \text{as} \quad n \rightarrow \infty. \]
Thus
\[y^{(k)} := (y_i^{(k)}) \in A \]
whenever \(y_i^{(k)} = a_{n,k} \) for \(i \in U_n \setminus U_{n+1} \) since \(|y^{(k)}| \leq |x| \). If \(\sum_{k=1}^m a_k y_i^{(k)} \in J_\mathcal{U} \) then for \(i \in U_n \) we have
\[\left| \sum_{k=1}^{m-1} a_k y_i^{(k)} \right| \leq \sum_{k=1}^{m-1} |a_k| a_{n,k}. \]
Therefore for \(i \in U_n \setminus U_{n+1} \)
\[\left| \sum_{k=1}^m a_k y_i^{(k)} \right| \geq |a_m| a_{n,m} - \sum_{k=1}^{m-1} |a_k| a_{n,m-1} \]
and thus if $\alpha_m \neq 0$, then
\[\lim_{U} \sum_{k=1}^{m} \alpha_k y^{(k)} \neq 0. \]
Hence we have proved that $(y^{(k)} + J_U)_k$ is a linearly independent sequence in A/J_U.

(c) The conclusion follows from (a) and (b).

Lemma 4.4 Let A be an ℓ_∞-module. If a proper maximal ideal $J \subset A$ is solid or regular, then F_J is an ultrafilter.

Proof. Suppose that there is a set $E \subset N$ such that E and E^c do not belong to F_J. Then J contains neither $A(E)$ nor $A(E^c)$.

If J is solid then $J + A(E)$ is a proper ideal containing properly the maximal ideal J. This implies that $J + A(E) = A$. Therefore, for $y \in A(E^c) \setminus J$, there are $z \in J$ and $w \in A(E)$ such that $z + w = y$. In particular $y_i = z_i$ for each $i \in E^c$ and $y_i = 0$ for each $i \in E$. Thus $|y| \leq |z|$, which implies $y \in J$, as J is solid. This is a contradiction and F_J is an ultrafilter.

If J is a proper maximal ideal then there is $x \in A$ such that $x + J$ is the unit of A/J. Then for arbitrary $y \in A(E), y - xy \in J$. If $J \supset (A(E))^2$ then $xy = (xe_E)y \in (A(E))^2$ and we have $y \in J$; a contradiction. We have proved that $J \not\supset (A(E))^2$. Thus there are $x_1, x_2 \in A(E)$ such that $x_1 \cdot x_2 \notin J$. Clearly, the ideal $J + A(E^c)$ properly contains J. By maximality, $J + A(E^c) = A$, thus $x_1 = v + w$, for some $v \in J$, $w \in A(E^c)$.

Now, $v + x = x_1$ and $x_1x_2 = (v + x)e x_2 = vx_2 \in J$; a contradiction. Therefore also in that case F_J is an ultrafilter.

Lemma 4.5 If J is an proper ideal in an ℓ_∞-module A, such that F_J is an ultrafilter not containing unital sets, then every element of the algebra A/J is quasi-invertible. Thus there are no regular ideals containing J.

Proof. Take $x \in A \setminus J$. Since F_J contains no unital sets, $\lim_{F_J} x = 0$ (see the proof of Prop. 4.3 (a)). Thus there is $U \in F_J$ such that $|x_i| < 1/2$ for each $i \in U$. The element $y := \frac{x}{-1} e_U$, defined pointwise, belongs to $k_p(V, U)$. We have
\[y + x - xy = \frac{x}{x - 1} e + xe_U + xe_U^c - \frac{x^2}{x - 1} e = xe_U^c \in A(U^c) \subset J, \]
as $U \in F_J$. This implies that $x + J$ is quasi-invertible in A/J.

Lemma 4.6 Let J be a proper ideal in an ℓ_∞-module A. The ideal J_U for an ultrafilter U contains J if and only if $U \supset F_J$.

Proof. If $J \subset J_U$ then $F_J \subset F_{J_U} = U$. On the other hand, if $J \not\subset J_U$ then there are $x \in J, y \in A$ such that $\lim_{J_U} xy \neq 0$. Thus there is a set $U \subset J$, $\varepsilon > 0$, such that $|xy| > \varepsilon$ on U. We find $z \in A, |z| \leq (1/\varepsilon) y$ such that $e_U = xz \in J$. Clearly $k_p(V, U) \subset J$ and $U^c \in F_J$ and $U \not\supset F_J$.

Proof of Theorem 4.2. By Lemmas 4.4 and 4.5, for every proper maximal regular ideal J the set F_J is an ultrafilter containing an unital set. On the other hand, for every ultrafilter U containing an unital set, by Proposition 4.3, J_U is a proper ideal. Obviously, $F_{J_U} \subset U$ and since U is an ultrafilter $F_{J_U} = U$. If $J \supset J_U$ is a proper ideal then $F_J \supset F_{J_U}$ and thus F_{J_U}. By Lemma 4.6, $J_U \supset J$; we have proved that J_U is maximal.

Observe that by Lemma 4.6 $F_{J_U} \supset J$. Since J is a maximal proper ideal thus $J_{F_J} = J$. □

The following result is proved in [28, Corollary 14] (cf. also [11, Lemma 2]):
Corollary 4.7 Every multiplicative functional \(m \) in an \(\ell_\infty \)-module is of the form
\[
m(x) = \lim_{\mathcal{U}} x,
\]
where \(\mathcal{U} \) is an ultrafilter on \(\mathbb{N} \) containing an unital set.

Proof. Kernels of multiplicative functionals are exactly proper maximal regular ideals of codimension one. By Theorem 4.2 and Proposition 4.3, they are of the form
\[
\mathcal{J}_U := \{ x : \lim_{\mathcal{U}} x = 0 \}
\]
for ultrafilters \(\mathcal{U} \) containing a unital set and such that for every \(x \in A \) we have \(\lim_{\mathcal{U}} |x| < \infty \). \(\square \)

Clearly, not every ultrafilter generates a multiplicative functional, since it may happen that \(\lim_{\mathcal{U}} x = \pm \infty \) for some \(x \in A \) and some free ultrafilter \(\mathcal{U} \).

From Lemma 4.6 it follows immediately:

Corollary 4.8 A proper ideal \(\mathcal{J} \) in an \(\ell_\infty \)-module \(A \) is contained in a regular maximal proper ideal if and only if there is a unital set \(U \) which intersects all elements of \(\mathcal{F}_\mathcal{J} \).

There are proper ideals \(\mathcal{J} \) of \(A \) with \(\mathcal{F}_\mathcal{J} \) containing no unital sets.

Example 4.9 Assume that \(A \) is a non-unital \(\ell_\infty \)-module and take \(\mathcal{F} := \{ U \subset \mathbb{N} | U^c \text{ is unital } \} \), which is clearly a filter. Let \(\mathcal{U} \) be a ultrafilter containing \(\mathcal{F} \). By construction no element of \(U \in \mathcal{U} \) is unital (since otherwise \(U^c \in \mathcal{F} \subset \mathcal{U} \)). We define
\[
\mathcal{J}_0 := \bigcup_{U \in \mathcal{U}} A(U^c).
\]
Clearly \(\mathcal{J}_0 \) is an ideal of the required properties.

Clearly if for the algebra \(A \) we have the equality \(A = A^2 \) then all maximal ideals are regular. We clarify when there are non-solid maximal ideals.

Theorem 4.10 Let \(A \) be an \(\ell_\infty \)-module. Let us consider the following conditions:

(a) \(A^2 = A \).
(b) For every proper ideal \(\mathcal{J} \) in \(A \) its solid hull \(\tilde{\mathcal{J}} \) is also proper (i.e., \(\tilde{\mathcal{J}} \neq A \)).
(c) Every maximal proper ideal is solid.
(d) For every maximal proper ideal \(\mathcal{J} \) the filter \(\mathcal{F}_\mathcal{J} \) is an ultrafilter.
(e) Either \(A^2 = A \) or the filter \(\mathcal{F}_{A^2} \) is an ultrafilter.

Then (a) \(\Rightarrow \) (b) \(\Rightarrow \) (c) \(\Rightarrow \) (d) \(\Leftrightarrow \) (e).

If \(A = k_p(V) \), \(1 \leq p \leq \infty \) or \(p = 0 \), then all the above conditions are equivalent.

Proof. (a) \(\Rightarrow \) (b): Assume that \(\tilde{\mathcal{J}} = A \). Let \(x \in A \setminus \mathcal{J} \), then \(x = \sum_j y_j z_j \) for some \(y_j, z_j \in A \).

Clearly, there are \(w_j \in \mathcal{J} \) such that \(|y_j| \leq |w_j| \). Thus there are sequences \(u_j \) such that
\[
|u_j| \leq |z_j| \quad \text{and} \quad y_j z_j = w_j u_j.
\]

Clearly \(u_j \in A \). We have proved that \(x = \sum_j w_j u_j \in \mathcal{J} \); a contradiction.

(b) \(\Rightarrow \) (c): Obvious.

(c) \(\Rightarrow \) (d): Follows from Lemma 4.4.

(d) \(\Rightarrow \) (e): If \(A^2 \neq A \) and \(\mathcal{F}_{A^2} \) is not an ultrafilter then there is a set \(E \) such that both \(A(E) \neq A(E)^2 \) and \(A(E^c) \neq A(E^c)^2 \). Thus there are vectors \(x_+ \in A(E) \setminus A(E)^2 \) and \(x_- \in A(E^c) \setminus A(E^c)^2 \).
We will find linear functionals $f_+, f_- \in A'$ such that $f_\pm(A^2) = f_+(A(E^c)) = f_-(A(E)) = 0$ but $f_+(x+) = f_-(x-) = 1$. We define
\[\mathcal{J} := \{ x \in A : f_+(x) - f_-(x) = 0 \}. \]
Clearly, $\mathcal{J} \supset A^2$ and $\dim A/\mathcal{J} = 1$. Thus \mathcal{J} is a maximal proper degenerate ideal. Moreover, both E and E^c does not belong to $\mathcal{F}_{\mathcal{J}}$ since $x_+, x_- \notin \mathcal{J}$. In fact \mathcal{J} is not solid because $x_+ + x_- \in \mathcal{J}$ but $|x_+| \leq |x_+ + x_-|$.

(e) \Rightarrow (d): Every proper maximal ideal \mathcal{J} is either regular, and in this case $\mathcal{F}_{\mathcal{J}}$ is an ultrafilter by Lemma 4.4, or degenerate. In the latter case $\mathcal{F}_{\mathcal{J}} \supset \mathcal{F}_{\mathcal{A}2}$ and we get the conclusion.

(e) \Rightarrow (a) for $A = k_p(V)$: We use Proposition 5.10 proved below. Assume that $(k_p(V))^2 \neq k_p(V)$.

Assume that
\[\exists n \forall k \frac{v_k^2}{v_n} \notin \ell_\infty \]
then there is an increasing sequence (i_m) such that
\[\frac{v_m(i_m)^2}{v_n(i_m)^2} \geq m. \]
Clearly, for the sets
\[E_+ := \{ i_{2m} : m \in \mathbb{N} \}, \quad E_- := \{ i_{2m+1} : m \in \mathbb{N} \} \]
there are elements:
\[x_+ \in k_p(V, E_+) \setminus (k_p(V, E_+))^2, \quad x_- \in k_p(V, E_-) \setminus (k_p(V, E_-))^2. \quad (4.1) \]

Analogously, if $k_p(V)$ is not nuclear, $1 \leq p < \infty$, then
\[\exists n \forall k \sum v_k = \infty. \]
We construct inductively strictly increasing sequences of numbers $(i_m), (j_m)$ such that $i_m < j_m < i_{m+1}$ and
\[\sum_{i=i_{m}^{j_m}} \frac{v_m(i)}{v_n(i)} \geq m, \quad \sum_{i=i_{m+1}^{j_m+1}} \frac{v_m(i)}{v_n(i)} \geq m. \]
Clearly, both $k_p(V, E_+)$ and $k_p(V, E_-)$ are not nuclear if
\[E_+ := \{ i : \exists m i_{2m} \leq i \leq j_{2m} \}, \quad E_- := \{ i : \exists m i_{2m+1} \leq i \leq j_{2m+1} \}. \]
Thus also in that case the condition (4.1) holds for suitable x_+, x_-. In both cases $\mathcal{F}_{\mathcal{A}2}$ is not an ultrafilter since both $A(E_+) \neq A(E_+)^2$ and $A(E_-) \neq A(E_-)^2$ and a fortiori $A(E_+^c) \neq A(E_+^c)^2$.

We will give an Example 5.18 that the implication (d) \Rightarrow (c) in Theorem 4.10 does not hold in general.

Open problem: Does the implication (c) \Rightarrow (a) in Theorem 4.10 hold in every ℓ_∞-module?

5 Multiplicative functionals and ideals in algebras $k_p(V)$

In this section we again assume that $I = \mathbb{N}$, which is no loss of generality. An algebra $k_p(V), 1 \leq p < \infty$ or $p = 0$, is clearly an ℓ_∞-module. Therefore all the results of the preceding section remain valid. Nevertheless we can get more, especially since $k_p(V)$ is a locally convex space.
Theorem 5.1 Every multiplicative functional on an algebra \(k_p(V) \), \(1 \leq p \leq \infty \) or \(p = 0 \), is continuous. For \(p \neq \infty \) it is a point evaluation at some point in \(\mathbb{N} \). For \(p = \infty \) it is either a point evaluation at a point in \(\mathbb{N} \) or a limit over a free ultrafilter \(\mathcal{U} \) such that

\[
\lim_{\mathcal{U}} \frac{1}{v_n} < \infty \quad \text{for every } n \in \mathbb{N}.
\]

First, we need a lemma.

Lemma 5.2 If \(1 \leq p < \infty \) or \(p = 0 \) and \(U \) is an infinite unital set for the algebra \(k_p(V) \) then there is \(y = (y_j) \in k_p(V, U) \) such that

\[
\lim_{j \to \infty, j \not\in U} y_j = \infty.
\]

Proof. For \(1 \leq p < \infty \), by Prop. 2.5, there exists \(n_0 \) such that for all \(n \geq n_0 \) we have \(\sum_{i \in U} |v_n(i)|^p < \infty \) (see Prop. 2.5). Now, it is easy to see that there is \(y \in k_p(V, U) \) such that

\[
\lim_{j \to \infty, j \not\in U} y_j = \infty, \quad y_j > 0 \quad \text{for } j \in U.
\]

Proof of Theorem 5.1 Let \(m \neq 0 \) be a multiplicative functional. By Theorem 4.7, there is an ultrafilter \(\mathcal{U} \) on \(\mathbb{N} \) such that

\[
m(x) = \lim_{\mathcal{U}} x.
\]

There is \(x \in k_p(V) \) such that

\[
0 \neq m(x) = \lim_{\mathcal{U}} x,
\]

thus there is \(U \in \mathcal{U} \) and \(\varepsilon > 0 \) such that \(|z_j| > \varepsilon \) for each \(j \in U \). Therefore \(k_p(V, U) \) has a unit.

For \(p \neq \infty \), by Lemma 5.2, we find \(y \) such that \(m(y) = \lim_{\mathcal{U}} y_j = \infty \); a contradiction. A similar argument works for \(p = 0 \).

For \(p = \infty \), for any \(n \in \mathbb{N} \), \(\frac{1}{v_n} \in k_\infty(V) \). Therefore \(m \left(\frac{1}{v_n} \right) = C_n < \infty \) for every \(n \in \mathbb{N} \) which implies that \(m \) is continuous on \(\ell_\infty(v_n) \) for every \(n \in \mathbb{N} \). \(\square \)

Corollary 5.3 If an algebra \(k_p(V) \), \(1 \leq p \leq \infty \) or \(p = 0 \), is locally \(m \)-convex, then the set \(M(k_p(V)) \) of all multiplicative functionals on \(k_p(V) \) is equicontinuous.

Proof. By Theorem 2.8, \(k_p(V) \subset \ell_\infty \). The inclusion is necessarily continuous by the closed graph theorem. By Theorem 5.1, every \(m \in M(k_p(V)) \) is continuous and is of the form \(m(x) = \lim_{\mathcal{U}} x \). This implies that \(M(k_p(V)) \) is a \(\sigma(k_p(V)', k_p(V)) \)-bounded subset of \(k_p(V)' \). As \(k_p(V) \) is an (LB)-space, hence barrelled, \(M(k_p(V)) \) is equicontinuous. \(\square \)

We have already described maximal regular ideals in Theorem 4.2 as \(\mathcal{J}_U \) ideals. We can identify which of them are closed in algebras \(k_p(V) \).

Theorem 5.4 Let \(k_p(V) \) be an algebra, \(1 \leq p \leq \infty \) or \(p = 0 \), and let \(\mathcal{U} \) be an ultrafilter containing unital sets. Then exactly one of the following two conditions hold

(a) The ideal \(\mathcal{J}_U \) is a closed ideal of codimension one; this is so for \(p \neq \infty \) if and only if \(\mathcal{U} \) is fixed and for \(p = \infty \) if and only if \(\lim_{\mathcal{U}} (1/v_n) < \infty \) for every \(n \in \mathbb{N} \).

(b) The ideal \(\mathcal{J}_U \) is dense of infinite codimension; this is so for \(p \neq \infty \) if and only if \(\mathcal{U} \) is free and for \(p = \infty \) if and only if there is \(n \) such that \(\lim_{\mathcal{U}} (1/v_n) = \infty \).

All ideals \(\mathcal{J}_U \) are closed if and only if \(\inf_{i \in \mathbb{N}} v_n(i) > 0 \) for every \(n \in \mathbb{N} \).
Proof. If \(\mathcal{U} \) is fixed then \(\mathcal{J}_\mathcal{U} \) is closed of codimension one. Now, for \(p \neq \infty \) if \(\mathcal{U} \) is not fixed then it contains an infinite unital set. By Lemma 5.2 and Prop. 4.3, \(\mathcal{J}_\mathcal{U} \) is of infinite codimension. Since unit vectors belong to \(\mathcal{J}_\mathcal{U} \) and they are linearly dense the ideal in question is also dense.

Now, we prove the result for \(p = \infty \). Assume that \(\lim_{\mathcal{U}} (1/v_n) < \infty \) for every \(n \in \mathbb{N} \). For every \(x \in k_\infty(V) \) there is \(n \) such that \(|x| \leq \sum_{n} \) thus \(\lim_{\mathcal{U}} x < \infty \). Clearly, if \(x \in \mathcal{J}_\mathcal{U} \) then \(\lim_{\mathcal{U}} x = 0 \). On the other hand, if \(\lim_{\mathcal{U}} x = 0 \) then \(x \in \mathcal{J}_\mathcal{U} \). Indeed, for every \(y \in k_\infty(V) \) we have \(\lim_{\mathcal{U}} y < \infty \) thus \(\lim_{\mathcal{U}} xy = 0 \). Therefore

\[
\mathcal{J}_\mathcal{U} = \{ x : \lim_{\mathcal{U}} x = 0 \} = \ker m_\mathcal{U},
\]

where \(m_\mathcal{U} \) is a continuous multiplicative functional

\[
m_\mathcal{U}(x) = \lim_{\mathcal{U}} x \quad \text{(comp. Theorem 5.1).}
\]

Assume now that there is \(n \in \mathbb{N} \) such that \(\lim_{\mathcal{U}} (1/v_n) = \infty \). By Prop. 4.3, the considered ideal is of infinite codimension. It suffices to show that unit \(e \) belongs to the closure of \(\mathcal{J}_\mathcal{U} \). Let us observe that for \(U \in \mathcal{U} \) we have \(e_{U^c} \in \mathcal{J}_\mathcal{U} \). For every \(m \geq n, \varepsilon > 0 \), there is \(U \in \mathcal{U} \) such that \(v_n(i) \leq \varepsilon \) for \(i \in U \). Then

\[
|e(i) - e_{U^c}(i)|v_n(i) \leq \varepsilon \quad \text{for } i \in U.
\]

We have proved that \(e \in \overline{\mathcal{J}_\mathcal{U}} \). \(\Box \)

Corollary 5.5 In dual power series spaces of finite type \(\Lambda^p_\alpha \) all regular maximal ideals are closed of codimension one (i.e., they are kernels of point evaluations in \(\mathbb{N} \)). In dual power series of infinite type \(\Lambda^\infty_\alpha \) all ultrafilters give proper maximal regular ideals.

Now, it is time to identify the ideal \((k_p(V))^2 \). Given a sequence of weights \(V = (v_n)_n \), we denote \(V^2 := (v_n^2) \). If \(k_p(V), 1 \leq p \leq \infty \) or \(p = 0 \), is an algebra we can apply Proposition 2.1 to conclude that \(k_p(V^2) \subset k_p(V) \). In our next result we use the spaces \(\ell_q(v), 0 < q < 1, x = (x_i), i \in \ell_q(v) \) if and on if \(\sum |(v(i)|x_i)|^q < \infty \).

Proposition 5.6 Let \(k_p(V), 1 \leq p \leq \infty \) or \(p = 0 \) be an algebra, and define \(q = p/2 \) if \(p \neq \infty \) and \(q = \infty \) if \(p = \infty \). Then \((k_p(V))^2 = k_p(V)k_p(V) = k_q(V^2) \).

Remark 5.7 It follows that all degenerate ideals in algebras \(k_p(V) \) are dense for \(p \neq \infty \).

Proof. We present the details for \(1 \leq p < \infty \); the other two cases being easier. Set \(q = p/2 \). First observe that if \(x, y \in \ell_p(v_n) \), then \(xy \in \ell_q(v_n^2) \) by the Cauchy-Schwarz inequality. This implies \(k_p(V)k_p(V) \subset k_q(V^2) \). Conversely, if \(x \in \ell_q(v_n^2) \) for some \(k \), we can write \(x = uz \) with \(|u| \leq 1 \) on \(\mathbb{N} \), \(0 \leq z \in \mathbb{N} \) and \(z \in \ell_q(v_n^2) \). Clearly \(a := (z_i^{1/2}) \), satisfies \(a \in \ell_p(v_k) \) and \(b := a \in \ell_p(v_k) \). Thus \(x = ab \in k_p(V)k_p(V) \). In particular, \(k_p(V)k_p(V) = k_q(V^2) \) is a linear space which must coincide with \((k_p(V))^2 \). \(\Box \)

Now, we explain when there is no degenerate ideals in an algebra \(k_p(V) \), i.e., when \(k_p(V) = (k_p(V))^2 \). The following result is a consequence of Grothendieck’s factorization theorem.

Lemma 5.8 For each \(0 \leq s \leq \infty \) the equality \(k_s(V^2) = k_s(V) \) holds if and only if two following conditions are satisfied:

1. For each \(n \) there is \(k \geq n \) such that \(v_k/v_n^2 \in \ell_\infty \).
2. For each \(n \) there is \(k \geq n \) such that \(v_k^2/v_n \in \ell_\infty \).

Lemma 5.9 An \((LB)\)-space \(k_p(V), 1 \leq p < \infty \), is nuclear if and only if \(k_p(V) = k_{p/2}(V) \) algebraically.
Let every proper closed ideal in an algebra (V) be nuclear. If $k_p(V)$ is nuclear for each n there is k such that $v_k/v_n \in \ell_1$. Using this fact again, we find l such that $v_l/v_n \in \ell_1$. This implies $k_\infty(V) = k_{1/2}(V)$ and in particular $k_p(V) = k_{p/2}(V)$ if $1 \leq p < 2$. Conversely, suppose that $k_p(V) = k_{p/2}(V)$ and $1 \leq p < 2$. For each n there is k such that $\ell_p(v_n)$ is contained in $\ell_{p/2}(v_k)$ with continuous inclusion. This implies, for $y := v_k/v_n$, that $xy \in \ell_{p/2}$ for each $x \in \ell_p$. Therefore y is a multiplier from ℓ_p into $\ell_{p/2}$. Hence, by [22, Prop. 3], $y = v_k/v_n \in \ell_p$ and $k_p(V)$ is nuclear by [24, Theorems 27.16 and 28.16].

If $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, is an algebra, Proposition 2.1 ensures that condition (1) in Lemma 5.8 is satisfied.

Proposition 5.10 Let $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, be an algebra. Then

(a) $(k_p(V))^2 = k_p(V)$, $1 \leq p < \infty$, if and only if $k_p(V)$ is nuclear and for each n there is $k \geq n$ such that $v_k^2/v_n \in \ell_\infty$.

(b) $(k_p(V))^2 = k_p(V)$, $p = 0$ or $p = \infty$, if and only if for each n there is $k \geq n$ such that $v_k^2/v_n \in \ell_\infty$.

In particular, $(\Lambda_p(\alpha'))^2 = \Lambda_p(\alpha')$ holds always for $p = 0$ or $p = \infty$ and it holds exactly in the nuclear case for $1 \leq p < \infty$.

Proof. (a): Suppose that $1 \leq p < \infty$ and set $q := p/2$. Since condition (1) in Lemma 5.8 is satisfied and $q < p$, we have $(k_p(V))^2 = k_q(V)k_p(V) = k_q(V^2) \subset k_q(V) \subset k_p(V)$, by Proposition 5.6. Thus $(k_p(V))^2 = k_p(V)$ if and only if $k_q(V) = k_p(V)$ and $k_q(V^2) \subset k_q(V)$. This is equivalent to the nuclearity of $k_q(V)$ by Lemma 5.9 and condition (2) in Lemma 5.8.

(b): We assume $p = 0$. In this case, $(k_0(V))^2 = k_0(V^2)$, by Proposition 5.6, and $k_0(V^2) = k_0(V)$ if and only if condition (2) in Lemma 5.8 is satisfied.

Corollary 5.11 In a dual power series algebra $\Lambda_p^{\text{op}}(\alpha')$ for $p = \infty$ or $p = 0$ all maximal proper ideals are regular but for $1 \leq p < \infty$ all maximal proper ideals are regular if and only if the space is nuclear.

For arbitrary ideals we can say much less.

Definition 5.12 Let \mathcal{J} be an ideal. We define

$$V(\mathcal{J}) := \{j \in \mathbb{N} \mid \forall x = (x_n)_\mathcal{J} \in \mathcal{J} : x_j = 0\}.$$

An ideal \mathcal{J} contains e_j, if and only if j does not belong to $V(\mathcal{J})$. Indeed, clearly if $e_j \in \mathcal{J}$, then $j \notin V(\mathcal{J})$. Conversely, assume that $j \notin V(\mathcal{J})$. There is $x \in \mathcal{J}$ with $x_j \neq 0$. Then $e_j = (\frac{1}{x_j}x)e_j \in \mathcal{J}$.

Since $k_p(V)$, $1 \leq p < \infty$ or $p = 0$ has an unconditional orthogonal basis, [19, Theorem 2.2.] implies immediately:

Proposition 5.13 If \mathcal{J} is a closed ideal in an algebra $k_p(V)$, $1 \leq p < \infty$ or $p = 0$, then

$$\mathcal{J} = \{x \in k_p(V) : x_j = 0 \forall j \in V(\mathcal{J})\}.$$

By Corollary 5.1 and the above we get immediately:

Corollary 5.14 Every proper closed ideal in an algebra $k_p(V)$, $1 \leq p < \infty$ or $p = 0$ is an intersection of closed proper maximal ideals (kernels of continuous multiplicative functionals).
Proposition 5.15 Let us fix a set $M \subseteq \mathbb{N}$. Among ideals \mathcal{J} such that $V(\mathcal{J}) = M \subset \mathbb{N}$ in an algebra $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$, there is the smallest one

$$\mathcal{J}_{\text{min}}(M) := \{x \in k_p(V) : x_j = 0 \forall j \in V(\mathcal{J}) \text{ and only finitely many } x_j \neq 0\}$$

and the maximal one

$$\mathcal{J}_{\text{max}}(M) := \mathcal{J}_{\text{min}}(M) := \{x \in k_p(V) : x_j \neq 0 \forall j \in V(\mathcal{J})\}.$$

There are plenty of ideals between these two, for instance let $M = \emptyset$. Indeed, let \mathcal{F} be a free filter of subsets of \mathbb{N}, then

$$\mathcal{J}(\mathcal{F}) = \{x \in k_p(V) : \exists U \in \mathcal{F} \text{ such that } \forall j \in U \ x_j = 0\}.$$

Let $p > 1$ and assume $\inf_i v_n(i) > 0$ for all n. Then $k_1(V)$ is an ideal in $k_p(V)$ since $k_p(V)$ consists of bounded sequences. For $p = 1$ and $\inf_i v_n(i) > 0$ for all n, $k_1(V)$ contains an ideal $k_r(V)$ for any $0 < r < 1$.

These examples show that non-closed ideals need not be contained in a maximal proper closed ideal in the non-unital case.

Example 5.16 In the algebra Λ_{α}' the ideal φ of finitely non-zero sequences is not contained in any maximal proper ideal. This follows from Corollaries 4.8, 5.5 and 5.11.

We clarify now when all ideals are solid. From Theorem 5.1 and Corollary 5.14 every proper closed ideal in $k_p(V)$, $1 \leq p \leq \infty$ or $p = 0$ is solid.

Proposition 5.17 An algebra $k_p(V), 1 \leq p \leq \infty$ or $p = 0$, is unital if and only if every ideal in $k_p(V)$ is solid.

Proof. If the algebra is unital, there is n such that $e \in E(V_n)$. Let \mathcal{J} be an ideal, and suppose that $x \in \mathcal{J}, y \in k_p(V)$ and $|y| \leq |x|$ on \mathbb{N}. Define $z = (z_i)_i$ by $z_i := y_i/x_i$ if $x_i \neq 0$ and $z_i := 0$ otherwise. Since $|z| \leq e$, we have $z \in k_p(V)$. Since \mathcal{J} is an ideal, $y = zx \in \mathcal{J}$.

Conversely, suppose that $k_p(V)$ is not unital. We can apply Propositions 2.5, 2.6, Corollary 2.7 and a diagonal procedure to find a strictly increasing sequence $(i_j)_j$ of natural numbers such that $\lim_{j \to \infty} v_m(i_j) = \infty$ for each m. Now select a sequence $(\beta_j)_j$ of numbers greater than 1 tending to infinity such that for each m there is $D_m > 0$ with $\beta_j \leq D_m v_m(i_j)$ for each j. Take any $x \in k_p(V)$ such that $x_{i_j} \neq 0$ for each j and $x_i = 0$ otherwise. The set

$$\langle x \rangle := \{\lambda x + y x : \lambda \in \mathbb{C}, x \in k_p(V)\}$$

is an ideal of $k_p(V)$, as $(\lambda x + y z)x = x(\lambda z + y z) \in \langle x \rangle$ for each $z \in k_p(V)$ and each $\lambda x + y z \in \langle x \rangle$. We show that $\langle x \rangle$ is not solid, from where it also follows that it is a proper ideal. Define $\lambda_j := 1 - \beta_j^{-1/2}, j \in \mathbb{N}$. Then $\lim_{j \to \infty} \lambda_j = 1$ and $0 < \lambda_j < 1$ for each j. We set $z_{i_j} := \lambda_j x_{i_j}, j \in \mathbb{N}$ and $z_i := 0$ otherwise. Clearly $|z| \leq |x|$ and $x \in \langle x \rangle$. However, $z \notin \langle x \rangle$. Indeed, suppose that there are $\lambda \in \mathbb{C}$ and $y \in k_p(V)$ such that $z = \lambda x + y x$. Since $x_{i_j} \neq 0$ for each j, we get $y_{i_j} = \lambda_j - \lambda$ for each j. We apply that $y \in k_p(V)$ to find m such that $M := \sup_j v_m(i_j)|\lambda_j - \lambda| < \infty$. Hence

$$|\lambda_j - \lambda| \leq \frac{M}{v_m(i_j)} \leq \frac{MD_m}{\beta_j}.$$

Thus

$$|\lambda - 1| \leq |\lambda_j - \lambda| + |\lambda_j - 1| \leq \frac{MD_m}{\beta_j} + \frac{1}{\beta_j^{1/2}},$$

for each j. As $\lim_{j \to \infty} \beta_j = \infty$, we conclude $\lambda = 1$. Thus, for each j, we have

$$M \geq v_m(i_j)(1 - \lambda_j) \geq \beta_j \frac{1}{\beta_j^{1/2}} = \beta_j^{1/2};$$

a contradiction because $\lim_{j \to \infty} \beta_j = \infty$. \hfill \square
Example 5.18 We show that the implication (d) ⇒ (c) in Theorem 4.10 does not hold in general. Let

\[V = (v_n), v_n(j) := e^{-nj} \quad \text{and} \quad W = (w_n), w_n(j) := j/(\log j)^n. \]

Clearly, \(k_{\infty}(V) \), \(k_{\infty}(W) \) are algebras. By Proposition 5.10, \((k_{\infty}(V))^2 = k_{\infty}(V) \) while \((k_{\infty}(W))^2 \neq k_{\infty}(W) \). Let \(\mathcal{U} \) be a free ultrafilter and let:

\[A := \{ x : \exists U \in \mathcal{U} : xe_U \in k_{\infty}(W,U), xe_U^c \in k_{\infty}(V,U^c) \}. \]

It is not difficult to see that \(A \) is an \(\ell_{\infty} \)-module, \(F_A = \mathcal{U} \) but from the proof of Prop. 5.17 the ideal \(\langle x \rangle \) is not solid for \(x = \frac{1}{w_0} \). Even more, the vector \(z \) constructed in this proof with \(|z| \leq |x| \), \(z \notin \langle x \rangle \) satisfies

\[\alpha x + \beta z \notin A^2 = \{ x : \exists U \in \mathcal{U} xe_U \in (k_{\infty}(W,U))^2, xe_U^c \in k_{\infty}(V,U^c) \} \]

for any non zero pair of scalars \((\alpha, \beta)\). Thus there is a one codimensional subspace \(J \) in \(A \) such that \(J \supset x + A^2 \) but \(z \notin J \). The ideal \(J \) has the required properties.

References

20
Authors’ Addresses:

J. Bonet
Instituto Universitario de Matemática Pura y Aplicada IUMPA
Edificio ID15 (8E), Cubo F, Cuarta Planta
Universidad Politécnica de Valencia
E-46071 Valencia, SPAIN
e-mail: jbonet@mat.upv.es

P. Domanski
Faculty of Mathematics and Comp. Sci.
A. Mickiewicz University Poznań
and Institute of Mathematics
Polish Academy of Sciences (Poznań branch)
Umultowska 87, 61-614 Poznań, POLAND
e-mail: domanski@amu.edu.pl