Dynamics of composition operators on the space of analytic functions — the power bounded case

Paweł Domański

A. Mickiewicz University, Poznań, Poland

Modern Complex Analysis and Operator Theory and Applications, IV, El Escorial 2009

(a joint work with J. Bonet, IUMPA, Valencia, Spain)
Problem

Behaviour of iterates of a composition operator on:

- the space of complex analytic (holomorphic) functions $H(U)$;
- the space of real analytic functions $\mathcal{A}(\Omega)$.
Composition operator

Definition

\[C_\varphi(f) := f \circ \varphi \]

- \(\varphi : U \to U \) holomorphic, \(U \subseteq \mathbb{C}^d \) open set

\[C_\varphi : H(U) \to H(U) \]

- \(\varphi : \Omega \to \Omega \) real analytic, \(\Omega \subseteq \mathbb{R}^d \) open set

\[C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega) \]

Iterates:

\[(C_\varphi)^n := C_\varphi \circ C_\varphi \circ \cdots \circ C_\varphi = C_\varphi^n \quad \text{for } n \text{ times} \]
Behavior of iterates of an operator

Operator: $T : X \to X$, X a lcs ($X = H(U)$ or $A(\Omega)$)

Orbit: $x, Tx, T^2x, \ldots, T^n x, \ldots$
Behavior of iterates of an operator

Operator: $T : X \to X$, X a lcs ($X = H(U)$ or $\mathcal{A}(\Omega)$)

Orbit: $x, Tx, T^2 x, \ldots, T^n x, \ldots$

Definition

- T power bounded iff all orbits are bounded;
Behavior of iterates of an operator

Operator: $T : X \rightarrow X$, X a lcs ($X = H(U)$ or $\mathcal{A}(\Omega)$)
Orbit: $x, Tx, T^2x, \ldots, T^n x, \ldots$

Definition

- T power bounded iff all orbits are bounded; (for barrelled X
 iff $\{T^n : n \in \mathbb{N}\}$ equicontinuous)
Behavior of iterates of an operator

Operator: $T : X \to X$, X a lcs ($X = H(U)$ or $\mathcal{A} (\Omega)$)
Orbit: x, Tx, T^2x, \ldots, T^nx, \ldots

Definition

- T power bounded iff all orbits are bounded;
- T mean ergodic iff all orbits are Cesaro pointwise convergent, i.e.,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} T^j x = P x,$$
Behavior of iterates of an operator

Operator: $T : X \to X$, X a lcs ($X = H(U)$ or $\mathcal{A}(\Omega)$)

Orbit: $x, Tx, T^2x, \ldots, T^n x, \ldots$

Definition

- T power bounded iff all orbits are bounded;
- T mean ergodic iff all orbits are Cesaro pointwise convergent, i.e.,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} T^j x = Px,$$

(P is a necessarily a continuous projection for barrelled X).
Behavior of iterates of an operator

Operator: $T : X \to X$, X a lcs ($X = H(U)$ or $\mathcal{A}(\Omega)$)

Orbit: $x, Tx, T^2x, \ldots, T^nx, \ldots$

Definition

- T power bounded iff all orbits are bounded;
- T mean ergodic iff all orbits are Cesaro pointwise convergent, i.e.,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} T^j x = Px,$$

- T uniformly mean ergodic iff the convergence above is uniform on bounded sets to a continuous map, i.e.,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} T^j = P \in L(X).$$
Behavior of iterates of an operator

Operator: \(T : X \rightarrow X, \) \(X \) a lcs \((X = H(U) \text{ or } \mathcal{A}(\Omega)) \)
Orbit: \(x, Tx, T^2x, \ldots, T^n x, \ldots \)

Definition

- \(T \) power bounded iff all orbits are bounded;
- \(T \) mean ergodic iff all orbits are Cesaro pointwise convergent, i.e.,
 \[
 \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} T^j x = Px,
 \]
- \(T \) uniformly mean ergodic iff the convergence above is uniform on bounded sets to a continuous map;
- \(T \) hypercyclic iff \(T \) has a dense orbit. (Bernal and Montes 1995+)
Relation between various behaviors of iterates

Operator $T : X \to X$, X a locally convex space
Relation between various behaviors of iterates

Operator $T : X \to X$, X a locally convex space

- T power bounded + X reflexive and “nice” \Rightarrow T mean ergodic;
- T mean ergodic + X Montel \Rightarrow T uniformly mean ergodic.
Relation between various behaviors of iterates

Operator $T : X \rightarrow X$, X a locally convex space

- T power bounded + X reflexive and “nice” \Rightarrow T mean ergodic;
- T mean ergodic + X Montel \Rightarrow T uniformly mean ergodic.

T power bounded + $X = H(U)$ or $X = \mathcal{A} (\Omega)$ \Rightarrow T (uniformly) mean ergodic.
Why does not the complex case solve the real case?

Real analytic selfmap: \(\phi : (-1, 1) \rightarrow (-1, 1) \), \(\phi(z) := i^{1.6 \ln \left(1 - iz \right) + iz} \).

Extends to a complex map: \(\phi : \mathbb{D} \rightarrow \{ z : |\text{Re}z| < \pi/3 \}. \)
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \to (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \to (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:

\[\varphi : \mathbb{D} \to \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map :

\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi \):
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:

\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi^2 \):
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:

\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi^3 \):

![Diagram showing the singularity at 0.5i]
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:

\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi^4 \):
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:

\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi^5 \):
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \to (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:

\[\varphi : \mathbb{D} \to \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

Singularity of \(\varphi^6 \):
Why does not the complex case solve the real case?

Real analytic selfmap:

$$\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right)$$

Extends to a complex map:

$$\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\}$$

singularity of φ^7:
Why does not the complex case solve the real case?

Real analytic selfmap:
\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map:
\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi^{13} \):
Why does not the complex case solve the real case?

Real analytic selfmap:

\[\varphi : (-1, 1) \rightarrow (-1, 1), \quad \varphi(z) := \frac{i}{1.6} \ln \left(\frac{1 - iz}{1 + iz} \right) \]

Extends to a complex map (never a selfmap):

\[\varphi : \mathbb{D} \rightarrow \left\{ z : |\text{Re } z| < \frac{\pi}{3.2} \right\} \]

singularity of \(\varphi^{13} \):

\[\text{Diagram:}\]
Power bounded composition operators on $H(U)$

Theorem

Let U an open set in \mathbb{C}^d,

\[\varphi : U \rightarrow U \text{ holomorphic. TFAE:} \]

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
Power bounded composition operators on $H(U)$

Theorem

Let U a domain of holomorphy (Stein manifold), $\varphi : U \to U$ holomorphic. TFAE:

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
- φ has uniformly compact orbits, i.e.,

$$\forall K \subset U, \exists L \subset U \forall n \in \mathbb{N} \quad \varphi^n(K) \subset L.$$
Power bounded composition operators on $H(U)$

Theorem

Let U a domain of holomorphy (Stein manifold), $\varphi : U \to U$ holomorphic. TFAE:

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
- φ has uniformly compact orbits, i.e.,
 $$\forall K \subset U, \exists L \subset U \forall n \in \mathbb{N} \quad \varphi^n(K) \subset L.$$

If U is hyperbolic then
- \Leftrightarrow all orbits of φ are compact;
Power bounded composition operators on $H(U)$

Theorem

Let U a domain of holomorphy (Stein manifold), $\varphi : U \to U$ holomorphic. TFAE:

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
- φ has uniformly compact orbits, i.e.,

$$\forall K \subseteq U, \exists L \subseteq U \forall n \in \mathbb{N} \quad \varphi^n(K) \subseteq L.$$

If U is hyperbolic then

- \Leftrightarrow all orbits of φ are compact;

If U is complete hyperbolic then

- \Leftrightarrow there exists a compact orbit of φ.
Map φ with uniformly compact orbits

M. Abate (1989) selfmaps on taut manifolds

Theorem

A holomorphic map $\varphi : U \to U$, U hol. mnfld, has uniformly compact orbits iff there exists:

- a holomorphic submanifold M of U with a holomorphic retraction $\rho : U \to M$ and automorphism $\psi = \varphi|_M$;

such that

- $G = \{\psi^n : n \in \mathbb{N}\}^{H(M,M)}$ CAG of automorphisms;
- every cluster point of (φ^n) is of the form $\gamma \circ \rho$, $\gamma \in G$;
- every orbit $(\varphi^n z)$ tends to some G-orbit of elements of M uniformly on compact sets of $z \in U$.

Map φ with uniformly compact orbits

M. Abate (1989) selfmaps on taut manifolds

Theorem

A holomorphic map $\varphi : U \to U$, U hol. mnfld, has uniformly compact orbits iff there exists:

- a holomorphic submanifold M of U with a holomorphic retraction $\rho : U \to M$ and automorphism $\psi = \varphi |_M$;

such that

- $G = \{\psi^n : n \in \mathbb{N}\}^{H(M,M)}$ CAG of automorphisms;
- every cluster point of (φ^n) is of the form $\gamma \circ \rho$, $\gamma \in G$;
- every orbit $(\varphi^n z)$ tends to some G-orbit of elements of M uniformly on compact sets of $z \in U$.

Then $P(f)(z) := \frac{1}{n} \sum_{j=1}^{n} C_{\varphi^j}(f)(z) = \int_G f(\gamma \circ \rho(z))dH(\gamma)$, where H is the Haar measure on G and

$\text{im } P = \{f : \text{ const. on } \rho^{-1}(\{\gamma \circ \rho(z) : \gamma \in G\}) \, \forall \, z \in U\}.$
Space of real analytic functions

\[\mathcal{A}(\mathbb{R}) = \bigcap_{N \in \mathbb{N}} H([-N, N]) = \bigcap_{N \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} H^\infty\left([-N, N] + K(0, 1/m) \right) \]

\((V_{N,m})_{m \in \mathbb{N}}\) a basis of \(\mathbb{C}\)-nbhs of \([-N, N]\).

\[H([-1, 1]) \supset \cdots \supset H([-N, N]) \supset \cdots \supset \mathcal{A}(\mathbb{R}) \]

\[H^\infty(V_{N,1}) \subset \cdots \subset H^\infty(V_{N,m}) \subset \cdots \subset H([-N, N]) \]
Space of real analytic functions

\[\mathcal{A}(\mathbb{R}) = \bigcap_{N \in \mathbb{N}} H([-N, N]) = \bigcap_{N \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} H^\infty([-N, N] + K(0, 1/m)_{\mathbb{V}_{N,m}}) \]

\((V_{N,m})_{m \in \mathbb{N}}\) a basis of \(C\)-nbhs of \([-N, N]\).

\[H([-1, 1]) \supset \cdots \supset H([-N, N]) \supset \cdots \supset \mathcal{A}(\mathbb{R}) \]

\[H^\infty(V_{N,1}) \subset \cdots \subset H^\infty(V_{N,m}) \subset \cdots \subset H([-N, N]) \]

The only natural topology:

\[H(V) \xrightarrow{R} \mathcal{A}(\mathbb{R}) \xrightarrow{r} H(K) \] restriction maps continuous

compact \(K \subseteq \mathbb{R} \subseteq V\) open in \(\mathbb{C}\)
Space of real analytic functions

\[\mathcal{A}(\mathbb{R}) = \bigcap_{N \in \mathbb{N}} H([-N, N]) = \bigcap_{N \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} H^\infty([-N, N] + K(0, 1/m)_{V_{N,m}}) \]

\((V_{N,m})_{m \in \mathbb{N}}\) a basis of \(\mathbb{C}\)-nbhs of \([-N, N]\).

\[H([-1, 1]) \supset \cdots \supset H([-N, N]) \supset \cdots \supset \mathcal{A}(\mathbb{R}) \]

\[H^\infty(V_{N,1}) \subset \cdots \subset H^\infty(V_{N,m}) \subset \cdots \subset H([-N, N]) \]

The only natural topology:

\[\begin{align*}
H(V) & \xrightarrow{R} \mathcal{A}(\mathbb{R}) \xrightarrow{r} H(K) \quad \text{restriction maps continuous} \\
\text{compact } K & \subseteq \mathbb{R} \subseteq V \text{ open in } \mathbb{C} \\
\mathcal{A}(\Omega) & \leftrightarrow \text{a matrix of Banach spaces } (H^\infty(V_{N,m}))_{N,m \in \mathbb{N}}
\end{align*} \]
Properties of the space of real analytic functions

The space of real analytic functions $\mathcal{A}(\Omega)$, $\Omega \subseteq \mathbb{R}^d$ open:

- complete separable and non-metrizable;
- with open mapping and closed graph theorem;
- nuclear and with the approximation property;
- no Schauder basis (Domański-Vogt 2000).
Theorem

Let $\Omega \subseteq \mathbb{R}^d$ open connected, $\varphi : \Omega \to \Omega$ real analytic. TFAE:

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
- for every complex nghb. U of Ω there is a complex open nghb. V of Ω, $V \subseteq U$, such that $\varphi(V) \subseteq V$;
- as above and orbits of $\varphi : V \to V$ are uniformly compact;
- $\varphi : \Omega \to \Omega$ has uniformly compact orbits and there is a hyperbolic complex open nghb. V of Ω such that $\varphi(V) \subseteq V$.
Power bounded composition operators on $\mathcal{A}(\Omega)$

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ open connected., $\varphi : \Omega \to \Omega$ real analytic. TFAE:

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
- for every complex nghb. U of Ω there is a complex open nghb. V of Ω, $V \subseteq U$, such that $\varphi(V) \subseteq V$;
Power bounded composition operators on $\mathcal{A}(\Omega)$

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ open connected., $\varphi : \Omega \to \Omega$ real analytic. TFAE:

- C_φ is power bounded;
- C_φ is (uniformly) mean ergodic;
- for every complex nghb. U of Ω there is a complex open nghb. V of Ω, $V \subseteq U$, such that $\varphi(V) \subseteq V$;
- as above and orbits of $\varphi : V \to V$ are uniformly compact;
Power bounded composition operators on \(\mathcal{A}(\Omega) \)

Theorem

Let \(\Omega \subseteq \mathbb{R}^d \) open connected., \(\varphi : \Omega \to \Omega \) real analytic. TFAE:

- \(C_\varphi \) is power bounded;
- \(C_\varphi \) is (uniformly) mean ergodic;
- for every complex nghb. \(U \) of \(\Omega \) there is a complex open nghb. \(V \) of \(\Omega \), \(V \subseteq U \), such that \(\varphi(V) \subseteq V \);
- as above and orbits of \(\varphi : V \to V \) are uniformly compact;
- \(\varphi : \Omega \to \Omega \) has uniformly compact orbits and there is a hyperbolic complex open nghb. \(V \) of \(\Omega \) such that \(\varphi(V) \subseteq V \).
Corollary

If $C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$ is power bounded for a real analytic map $\varphi : \Omega \to \Omega$, $\Omega \subseteq \mathbb{R}^d$ open connected then there exists:

- a real analytic submanifold M of Ω with a real analytic retraction $\rho : \Omega \to M$ and automorphism $\psi = \varphi|_M$;

such that

- $G = \left\{ \psi^n : n \in \mathbb{N} \right\}^{\mathcal{A}(M,M)}$ CAG of automorphisms;
- every cluster point of (φ^n) is of the form $\gamma \circ \rho$, $\gamma \in G$;
- every orbit $(\varphi^n z)$ tends to some G-orbit of elements of M uniformly on compact sets of $z \in \Omega$.

\[
P(f)(z) := \frac{1}{n} \sum_{j=1}^{n} C_\varphi f(z) = \int_G f(\gamma \circ \rho(z)) dH(\gamma),
\] where H is the Haar measure on G and $\text{im} P = \left\{ f : \text{const. on } \rho^{-1}(\{\gamma \circ \rho(z) : \gamma \in G\}) \forall z \in \Omega \right\}$.
Power bounded $C_\varphi : A(\Omega) \to A(\Omega)$

Corollary

If $C_\varphi : A(\Omega) \to A(\Omega)$ is power bounded for a real analytic map $\varphi : \Omega \to \Omega$, $\Omega \subseteq \mathbb{R}^d$ open connected then there exists:

- a real analytic submanifold M of Ω with a real analytic retraction $\rho : \Omega \to M$ and automorphism $\psi = \varphi|_M$;

such that

- $G = \{\psi^n : n \in \mathbb{N}\}^{A(M,M)}$ CAG of automorphisms;
- every cluster point of (φ^n) is of the form $\gamma \circ \rho$, $\gamma \in G$;
- every orbit $(\varphi^n z)$ tends to some G-orbit of elements of M uniformly on compact sets of $z \in \Omega$.

Then $P(f)(z) := \frac{1}{n} \sum_{j=1}^n C_{\varphi_j}(f)(z) = \int_G f(\gamma \circ \rho(z))dH(\gamma)$, where H is the Haar measure on G and

$\text{im } P = \{f : \text{ const. on } \rho^{-1}(\{\gamma \circ \rho(z) : \gamma \in G\}) \ \forall \ z \in \Omega\}$.
Power bounded $C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$

Corollary

If $C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$ is power bounded for a real analytic map $\varphi : \Omega \to \Omega$, $\Omega \subseteq \mathbb{R}^d$ open connected then there exists:

- a real analytic submanifold M of Ω with a real analytic retraction $\rho : \Omega \to M$ and automorphism $\psi = \varphi|_M$;

such that

- $G = \{\psi^n : n \in \mathbb{N}\}^{\mathcal{A}(M,M)}$ CAG of automorphisms;

- every cluster point of (φ^n) is of the form $\gamma \circ \rho$, $\gamma \in G$;

- every orbit $(\varphi^n z)$ tends to some G-orbit of elements of M uniformly on compact sets of $z \in \Omega$.

Then $P(f)(z) := \frac{1}{n} \sum_{j=1}^{n} C_{\varphi^j}(f)(z) = \int_G f(\gamma \circ \rho(z))dH(\gamma)$, where H is the Haar measure on G and

$\text{im } P = \{f : \text{ const. on } \rho^{-1}(\{\gamma \circ \rho(z) : \gamma \in G\}) \ \forall \ z \in \Omega\}$.
Corollary

Let \(\varphi : (a, b) \rightarrow (a, b) \), \(a, b \in \mathbb{R} \cup \{\infty, -\infty\} \). TFAE:

- \(C_\varphi : \mathbb{A}(a, b) \rightarrow \mathbb{A}(a, b) \) power bounded;
- \(\varphi \) has a real fixed point \(\alpha \) and
 \(\exists \) a complex nghb. \(U \) of \((a, b) \), \(\text{card}(\mathbb{C} \setminus U) > 1, \varphi(U) \subseteq U \);
- \(\varphi \) is one of the form:
 - \(\varphi = \text{id} \);
 - \(\varphi^2 = \text{id} \);
 - \(\varphi^n \rightarrow \alpha \) as \(n \rightarrow \infty \);
Corollary

Let \(\varphi : (a, b) \rightarrow (a, b) \), \(a, b \in \mathbb{R} \cup \{ \infty, -\infty \} \). TFAE:

- \(C\varphi : \mathcal{A}(a, b) \rightarrow \mathcal{A}(a, b) \) power bounded;
- \(\varphi \) has a real fixed point \(\alpha \) and
 \[\exists \text{ a complex nghb. } U \text{ of } (a, b), \text{ card}(\mathbb{C} \setminus U) > 1, \varphi(U) \subseteq U; \]
- \(\varphi \) is one of the form:
 - \(\varphi = \text{id} \); for \(\varphi'(u) = 1 \), \(P = \text{id} \)
 - \(\varphi^2 = \text{id} \);
 - \(\varphi^n \rightarrow \alpha \) as \(n \rightarrow \infty \);
One dimensional case

Corollary

Let $\varphi : (a, b) \rightarrow (a, b), a, b \in \mathbb{R} \cup \{\infty, -\infty\}$. TFAE:

- $C_{\varphi} : \mathcal{A}(a, b) \rightarrow \mathcal{A}(a, b)$ power bounded;
- φ has a real fixed point α and there exists a complex neighborhood U of (a, b), $\text{card}(\mathbb{C} \setminus U) > 1$, $\varphi(U) \subseteq U$;
- φ is one of the form:
 - $\varphi = \text{id}$; for $\varphi'(u) = 1$, $P = \text{id}$
 - $\varphi^2 = \text{id}$; for $\varphi'(u) = -1$, $P(f) = \frac{f + f \circ \varphi}{2}$
 - $\varphi^n \rightarrow \alpha$ as $n \rightarrow \infty$;
One dimensional case

Corollary

Let $\varphi : (a, b) \to (a, b)$, $a, b \in \mathbb{R} \cup \{\infty, -\infty\}$. TFAE:

- $C_{\varphi} : \mathcal{A}(a, b) \to \mathcal{A}(a, b)$ power bounded;
- φ has a real fixed point α and
 \exists a complex nghb. U of (a, b), $\text{card}(\mathbb{C} \setminus U) > 1$, $\varphi(U) \subseteq U$;
- φ is one of the form:
 - $\varphi = \text{id}$; for $\varphi'(u) = 1$, $P = \text{id}$
 - $\varphi^2 = \text{id}$; for $\varphi'(u) = -1$, $P(f) = \frac{f + f \circ \varphi}{2}$
 - $\varphi^n \to \alpha$ as $n \to \infty$; for $|\varphi'(u)| < 1$, $P(f) = f(u)$
Open problems:

Theorem

$C_\varphi : \mathcal{A}(\Omega) \rightarrow \mathcal{A}(\Omega)$ is power bounded iff $\varphi : \Omega \rightarrow \Omega$ has uniformly compact orbits and there is a hyperbolic complex open nghb. V of Ω such that $\varphi(V) \subseteq V$.

Example

For $\varphi(z) := i^{1.6} \ln(1 - iz + iz)$ the map $C_\varphi : \mathcal{A}(-1,1) \rightarrow \mathcal{A}(-1,1)$ is not power bounded but $\varphi(-1,1) \subseteq [\pi/3.2, \pi/3.2]$ thus $\varphi : (-1,1) \rightarrow (-1,1)$ has uniformly compact orbits.

Problem

• Does power boundedness of $C_\varphi : \mathcal{A}(\Omega) \rightarrow \mathcal{A}(\Omega)$ imply that Ω has a complete hyperbolic complex open neighbourhood V such that $\varphi(V) \subseteq V$.

• Characterize power boundedness of $C_\varphi : \mathcal{A}(\Omega) \rightarrow \mathcal{A}(\Omega)$ in terms of the behavior of φ on Ω solely.
Open problems:

Theorem

$C_{\varphi} : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$ is power bounded iff $\varphi : \Omega \to \Omega$ has uniformly compact orbits and there is a hyperbolic complex open nghb. V of Ω such that $\varphi(V) \subseteq V$.

Problem

- Does power boundedness of $C_{\varphi} : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega)$ implies that Ω has a complete hyperbolic complex open neighbourhood V such that $\varphi(V) \subseteq V$.

Open problems:

Theorem

\[C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega) \text{ is power bounded iff } \varphi : \Omega \to \Omega \text{ has uniformly compact orbits and there is a hyperbolic complex open nghb. } V \text{ of } \Omega \text{ such that } \varphi(V) \subseteq V. \]

Example

For \(\varphi(z) := \frac{i}{1.6} \ln \left(\frac{1-iz}{1+iz} \right) \) the map \(C_\varphi : \mathcal{A}(-1, 1) \to \mathcal{A}(-1, 1) \) is not power bounded but \(\varphi(-1, 1) \subseteq \left[\frac{\pi}{3.2}, \frac{\pi}{3.2} \right] \) thus \(\varphi : (-1, 1) \to (-1, 1) \) has uniformly compact orbits.

Problem

- Does power boundedness of \(C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega) \) implies that \(\Omega \) has a complete hyperbolic complex open neighbourhood \(V \) such that \(\varphi(V) \subseteq V. \)
Open problems:

Theorem

\[C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega) \text{ is power bounded iff } \varphi : \Omega \to \Omega \text{ has uniformly compact orbits and there is a hyperbolic complex open nghb. } V \text{ of } \Omega \text{ such that } \varphi(V) \subseteq V. \]

Example

For \(\varphi(z) := \frac{i}{1.6} \ln \left(\frac{1-i}{1+i} \right) \) the map \(C_\varphi : \mathcal{A}(-1,1) \to \mathcal{A}(-1,1) \) is not power bounded but \(\varphi(-1,1) \subseteq \left[\frac{\pi}{3.2}, \frac{\pi}{3.2} \right] \) thus \(\varphi : (-1,1) \to (-1,1) \) has uniformly compact orbits.

Problem

- Does power boundedness of \(C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega) \) implies that \(\Omega \) has a complete hyperbolic complex open neighbourhood \(V \) such that \(\varphi(V) \subseteq V. \)

- Characterize power boundedness of \(C_\varphi : \mathcal{A}(\Omega) \to \mathcal{A}(\Omega) \) in terms of the behavior of \(\varphi \) on \(\Omega \) solely.
Summary

• Form of analytic φ when C_φ power bounded — form of projection P;
Summary

- Form of analytic φ when C_φ power bounded — form of projection P;
- The power bounded case is the only one where real analytic iterates of a selfmap can be fully understood through iterates of a holomorphic selfmap.